org.apache.iceberg.spark.source.SparkScanBuilder Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of iceberg-spark-3.3_2.13 Show documentation
Show all versions of iceberg-spark-3.3_2.13 Show documentation
A table format for huge analytic datasets
The newest version!
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.apache.iceberg.spark.source;
import java.io.IOException;
import java.util.List;
import java.util.Optional;
import java.util.Set;
import java.util.concurrent.atomic.AtomicInteger;
import java.util.stream.Collectors;
import java.util.stream.Stream;
import org.apache.iceberg.BaseTable;
import org.apache.iceberg.BatchScan;
import org.apache.iceberg.FileScanTask;
import org.apache.iceberg.IncrementalAppendScan;
import org.apache.iceberg.IncrementalChangelogScan;
import org.apache.iceberg.MetadataColumns;
import org.apache.iceberg.MetricsConfig;
import org.apache.iceberg.MetricsModes;
import org.apache.iceberg.PartitionSpec;
import org.apache.iceberg.Schema;
import org.apache.iceberg.Snapshot;
import org.apache.iceberg.StructLike;
import org.apache.iceberg.Table;
import org.apache.iceberg.TableProperties;
import org.apache.iceberg.TableScan;
import org.apache.iceberg.expressions.AggregateEvaluator;
import org.apache.iceberg.expressions.Binder;
import org.apache.iceberg.expressions.BoundAggregate;
import org.apache.iceberg.expressions.Expression;
import org.apache.iceberg.expressions.ExpressionUtil;
import org.apache.iceberg.expressions.Expressions;
import org.apache.iceberg.io.CloseableIterable;
import org.apache.iceberg.relocated.com.google.common.base.Preconditions;
import org.apache.iceberg.relocated.com.google.common.collect.Lists;
import org.apache.iceberg.relocated.com.google.common.collect.Sets;
import org.apache.iceberg.spark.Spark3Util;
import org.apache.iceberg.spark.SparkAggregates;
import org.apache.iceberg.spark.SparkFilters;
import org.apache.iceberg.spark.SparkReadConf;
import org.apache.iceberg.spark.SparkReadOptions;
import org.apache.iceberg.spark.SparkSchemaUtil;
import org.apache.iceberg.types.Type;
import org.apache.iceberg.types.TypeUtil;
import org.apache.iceberg.types.Types;
import org.apache.iceberg.util.SnapshotUtil;
import org.apache.spark.sql.SparkSession;
import org.apache.spark.sql.catalyst.InternalRow;
import org.apache.spark.sql.connector.expressions.aggregate.AggregateFunc;
import org.apache.spark.sql.connector.expressions.aggregate.Aggregation;
import org.apache.spark.sql.connector.read.Scan;
import org.apache.spark.sql.connector.read.ScanBuilder;
import org.apache.spark.sql.connector.read.Statistics;
import org.apache.spark.sql.connector.read.SupportsPushDownAggregates;
import org.apache.spark.sql.connector.read.SupportsPushDownFilters;
import org.apache.spark.sql.connector.read.SupportsPushDownRequiredColumns;
import org.apache.spark.sql.connector.read.SupportsReportStatistics;
import org.apache.spark.sql.sources.Filter;
import org.apache.spark.sql.types.StructField;
import org.apache.spark.sql.types.StructType;
import org.apache.spark.sql.util.CaseInsensitiveStringMap;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
public class SparkScanBuilder
implements ScanBuilder,
SupportsPushDownAggregates,
SupportsPushDownFilters,
SupportsPushDownRequiredColumns,
SupportsReportStatistics {
private static final Logger LOG = LoggerFactory.getLogger(SparkScanBuilder.class);
private static final Filter[] NO_FILTERS = new Filter[0];
private StructType pushedAggregateSchema;
private Scan localScan;
private final SparkSession spark;
private final Table table;
private final CaseInsensitiveStringMap options;
private final SparkReadConf readConf;
private final List metaColumns = Lists.newArrayList();
private Schema schema;
private boolean caseSensitive;
private List filterExpressions = null;
private Filter[] pushedFilters = NO_FILTERS;
SparkScanBuilder(
SparkSession spark,
Table table,
String branch,
Schema schema,
CaseInsensitiveStringMap options) {
this.spark = spark;
this.table = table;
this.schema = schema;
this.options = options;
this.readConf = new SparkReadConf(spark, table, branch, options);
this.caseSensitive = readConf.caseSensitive();
}
SparkScanBuilder(SparkSession spark, Table table, CaseInsensitiveStringMap options) {
this(spark, table, table.schema(), options);
}
SparkScanBuilder(
SparkSession spark, Table table, String branch, CaseInsensitiveStringMap options) {
this(spark, table, branch, SnapshotUtil.schemaFor(table, branch), options);
}
SparkScanBuilder(
SparkSession spark, Table table, Schema schema, CaseInsensitiveStringMap options) {
this(spark, table, null, schema, options);
}
private Expression filterExpression() {
if (filterExpressions != null) {
return filterExpressions.stream().reduce(Expressions.alwaysTrue(), Expressions::and);
}
return Expressions.alwaysTrue();
}
public SparkScanBuilder caseSensitive(boolean isCaseSensitive) {
this.caseSensitive = isCaseSensitive;
return this;
}
@Override
public Filter[] pushFilters(Filter[] filters) {
// there are 3 kinds of filters:
// (1) filters that can be pushed down completely and don't have to evaluated by Spark
// (e.g. filters that select entire partitions)
// (2) filters that can be pushed down partially and require record-level filtering in Spark
// (e.g. filters that may select some but not necessarily all rows in a file)
// (3) filters that can't be pushed down at all and have to be evaluated by Spark
// (e.g. unsupported filters)
// filters (1) and (2) are used prune files during job planning in Iceberg
// filters (2) and (3) form a set of post scan filters and must be evaluated by Spark
List expressions = Lists.newArrayListWithExpectedSize(filters.length);
List pushableFilters = Lists.newArrayListWithExpectedSize(filters.length);
List postScanFilters = Lists.newArrayListWithExpectedSize(filters.length);
for (Filter filter : filters) {
try {
Expression expr = SparkFilters.convert(filter);
if (expr != null) {
// try binding the expression to ensure it can be pushed down
Binder.bind(schema.asStruct(), expr, caseSensitive);
expressions.add(expr);
pushableFilters.add(filter);
}
if (expr == null
|| unpartitioned()
|| !ExpressionUtil.selectsPartitions(expr, table, caseSensitive)) {
postScanFilters.add(filter);
} else {
LOG.info("Evaluating completely on Iceberg side: {}", filter);
}
} catch (Exception e) {
LOG.warn("Failed to check if {} can be pushed down: {}", filter, e.getMessage());
postScanFilters.add(filter);
}
}
this.filterExpressions = expressions;
this.pushedFilters = pushableFilters.toArray(new Filter[0]);
return postScanFilters.toArray(new Filter[0]);
}
private boolean unpartitioned() {
return table.specs().values().stream().noneMatch(PartitionSpec::isPartitioned);
}
@Override
public Filter[] pushedFilters() {
return pushedFilters;
}
@Override
public boolean pushAggregation(Aggregation aggregation) {
if (!canPushDownAggregation(aggregation)) {
return false;
}
AggregateEvaluator aggregateEvaluator;
List> expressions =
Lists.newArrayListWithExpectedSize(aggregation.aggregateExpressions().length);
for (AggregateFunc aggregateFunc : aggregation.aggregateExpressions()) {
try {
Expression expr = SparkAggregates.convert(aggregateFunc);
if (expr != null) {
Expression bound = Binder.bind(schema.asStruct(), expr, caseSensitive);
expressions.add((BoundAggregate, ?>) bound);
} else {
LOG.info(
"Skipping aggregate pushdown: AggregateFunc {} can't be converted to iceberg expression",
aggregateFunc);
return false;
}
} catch (IllegalArgumentException e) {
LOG.info("Skipping aggregate pushdown: Bind failed for AggregateFunc {}", aggregateFunc, e);
return false;
}
}
aggregateEvaluator = AggregateEvaluator.create(expressions);
if (!metricsModeSupportsAggregatePushDown(aggregateEvaluator.aggregates())) {
return false;
}
TableScan scan = table.newScan().includeColumnStats();
Snapshot snapshot = readSnapshot();
if (snapshot == null) {
LOG.info("Skipping aggregate pushdown: table snapshot is null");
return false;
}
scan = scan.useSnapshot(snapshot.snapshotId());
scan = configureSplitPlanning(scan);
scan = scan.filter(filterExpression());
try (CloseableIterable fileScanTasks = scan.planFiles()) {
for (FileScanTask task : fileScanTasks) {
if (!task.deletes().isEmpty()) {
LOG.info("Skipping aggregate pushdown: detected row level deletes");
return false;
}
aggregateEvaluator.update(task.file());
}
} catch (IOException e) {
LOG.info("Skipping aggregate pushdown: ", e);
return false;
}
if (!aggregateEvaluator.allAggregatorsValid()) {
return false;
}
pushedAggregateSchema =
SparkSchemaUtil.convert(new Schema(aggregateEvaluator.resultType().fields()));
InternalRow[] pushedAggregateRows = new InternalRow[1];
StructLike structLike = aggregateEvaluator.result();
pushedAggregateRows[0] =
new StructInternalRow(aggregateEvaluator.resultType()).setStruct(structLike);
localScan =
new SparkLocalScan(table, pushedAggregateSchema, pushedAggregateRows, filterExpressions);
return true;
}
private boolean canPushDownAggregation(Aggregation aggregation) {
if (!(table instanceof BaseTable)) {
return false;
}
if (!readConf.aggregatePushDownEnabled()) {
return false;
}
if (readConf.startSnapshotId() != null) {
LOG.info("Skipping aggregate pushdown: incremental scan is not supported");
return false;
}
// If group by expression is the same as the partition, the statistics information can still
// be used to calculate min/max/count, will enable aggregate push down in next phase.
// TODO: enable aggregate push down for partition col group by expression
if (aggregation.groupByExpressions().length > 0) {
LOG.info("Skipping aggregate pushdown: group by aggregation push down is not supported");
return false;
}
return true;
}
private Snapshot readSnapshot() {
Snapshot snapshot;
if (readConf.snapshotId() != null) {
snapshot = table.snapshot(readConf.snapshotId());
} else {
snapshot = SnapshotUtil.latestSnapshot(table, readConf.branch());
}
return snapshot;
}
private boolean metricsModeSupportsAggregatePushDown(List> aggregates) {
MetricsConfig config = MetricsConfig.forTable(table);
for (BoundAggregate aggregate : aggregates) {
String colName = aggregate.columnName();
if (!colName.equals("*")) {
MetricsModes.MetricsMode mode = config.columnMode(colName);
if (mode instanceof MetricsModes.None) {
LOG.info("Skipping aggregate pushdown: No metrics for column {}", colName);
return false;
} else if (mode instanceof MetricsModes.Counts) {
if (aggregate.op() == Expression.Operation.MAX
|| aggregate.op() == Expression.Operation.MIN) {
LOG.info(
"Skipping aggregate pushdown: Cannot produce min or max from count for column {}",
colName);
return false;
}
} else if (mode instanceof MetricsModes.Truncate) {
// lower_bounds and upper_bounds may be truncated, so disable push down
if (aggregate.type().typeId() == Type.TypeID.STRING) {
if (aggregate.op() == Expression.Operation.MAX
|| aggregate.op() == Expression.Operation.MIN) {
LOG.info(
"Skipping aggregate pushdown: Cannot produce min or max from truncated values for column {}",
colName);
return false;
}
}
}
}
}
return true;
}
@Override
public void pruneColumns(StructType requestedSchema) {
StructType requestedProjection =
new StructType(
Stream.of(requestedSchema.fields())
.filter(field -> MetadataColumns.nonMetadataColumn(field.name()))
.toArray(StructField[]::new));
// the projection should include all columns that will be returned, including those only used in
// filters
this.schema =
SparkSchemaUtil.prune(schema, requestedProjection, filterExpression(), caseSensitive);
Stream.of(requestedSchema.fields())
.map(StructField::name)
.filter(MetadataColumns::isMetadataColumn)
.distinct()
.forEach(metaColumns::add);
}
private Schema schemaWithMetadataColumns() {
// metadata columns
List metadataFields =
metaColumns.stream()
.distinct()
.map(name -> MetadataColumns.metadataColumn(table, name))
.collect(Collectors.toList());
Schema metadataSchema = calculateMetadataSchema(metadataFields);
// schema or rows returned by readers
return TypeUtil.join(schema, metadataSchema);
}
private Schema calculateMetadataSchema(List metaColumnFields) {
Optional partitionField =
metaColumnFields.stream()
.filter(f -> MetadataColumns.PARTITION_COLUMN_ID == f.fieldId())
.findFirst();
// only calculate potential column id collision if partition metadata column was requested
if (!partitionField.isPresent()) {
return new Schema(metaColumnFields);
}
Set idsToReassign =
TypeUtil.indexById(partitionField.get().type().asStructType()).keySet();
// Calculate used ids by union metadata columns with all base table schemas
Set currentlyUsedIds =
metaColumnFields.stream().map(Types.NestedField::fieldId).collect(Collectors.toSet());
Set allUsedIds =
table.schemas().values().stream()
.map(currSchema -> TypeUtil.indexById(currSchema.asStruct()).keySet())
.reduce(currentlyUsedIds, Sets::union);
// Reassign selected ids to deduplicate with used ids.
AtomicInteger nextId = new AtomicInteger();
return new Schema(
metaColumnFields,
table.schema().identifierFieldIds(),
oldId -> {
if (!idsToReassign.contains(oldId)) {
return oldId;
}
int candidate = nextId.incrementAndGet();
while (allUsedIds.contains(candidate)) {
candidate = nextId.incrementAndGet();
}
return candidate;
});
}
@Override
public Scan build() {
if (localScan != null) {
return localScan;
} else {
return buildBatchScan();
}
}
private Scan buildBatchScan() {
Long snapshotId = readConf.snapshotId();
Long asOfTimestamp = readConf.asOfTimestamp();
String branch = readConf.branch();
String tag = readConf.tag();
Preconditions.checkArgument(
snapshotId == null || asOfTimestamp == null,
"Cannot set both %s and %s to select which table snapshot to scan",
SparkReadOptions.SNAPSHOT_ID,
SparkReadOptions.AS_OF_TIMESTAMP);
Long startSnapshotId = readConf.startSnapshotId();
Long endSnapshotId = readConf.endSnapshotId();
if (snapshotId != null || asOfTimestamp != null) {
Preconditions.checkArgument(
startSnapshotId == null && endSnapshotId == null,
"Cannot set %s and %s for incremental scans when either %s or %s is set",
SparkReadOptions.START_SNAPSHOT_ID,
SparkReadOptions.END_SNAPSHOT_ID,
SparkReadOptions.SNAPSHOT_ID,
SparkReadOptions.AS_OF_TIMESTAMP);
}
Preconditions.checkArgument(
startSnapshotId != null || endSnapshotId == null,
"Cannot set only %s for incremental scans. Please, set %s too.",
SparkReadOptions.END_SNAPSHOT_ID,
SparkReadOptions.START_SNAPSHOT_ID);
Long startTimestamp = readConf.startTimestamp();
Long endTimestamp = readConf.endTimestamp();
Preconditions.checkArgument(
startTimestamp == null && endTimestamp == null,
"Cannot set %s or %s for incremental scans and batch scan. They are only valid for "
+ "changelog scans.",
SparkReadOptions.START_TIMESTAMP,
SparkReadOptions.END_TIMESTAMP);
if (startSnapshotId != null) {
return buildIncrementalAppendScan(startSnapshotId, endSnapshotId);
} else {
return buildBatchScan(snapshotId, asOfTimestamp, branch, tag);
}
}
private Scan buildBatchScan(Long snapshotId, Long asOfTimestamp, String branch, String tag) {
Schema expectedSchema = schemaWithMetadataColumns();
BatchScan scan =
table
.newBatchScan()
.caseSensitive(caseSensitive)
.filter(filterExpression())
.project(expectedSchema);
if (snapshotId != null) {
scan = scan.useSnapshot(snapshotId);
}
if (asOfTimestamp != null) {
scan = scan.asOfTime(asOfTimestamp);
}
if (branch != null) {
scan = scan.useRef(branch);
}
if (tag != null) {
scan = scan.useRef(tag);
}
scan = configureSplitPlanning(scan);
return new SparkBatchQueryScan(spark, table, scan, readConf, expectedSchema, filterExpressions);
}
private Scan buildIncrementalAppendScan(long startSnapshotId, Long endSnapshotId) {
Schema expectedSchema = schemaWithMetadataColumns();
IncrementalAppendScan scan =
table
.newIncrementalAppendScan()
.fromSnapshotExclusive(startSnapshotId)
.caseSensitive(caseSensitive)
.filter(filterExpression())
.project(expectedSchema);
if (endSnapshotId != null) {
scan = scan.toSnapshot(endSnapshotId);
}
scan = configureSplitPlanning(scan);
return new SparkBatchQueryScan(spark, table, scan, readConf, expectedSchema, filterExpressions);
}
@SuppressWarnings("CyclomaticComplexity")
public Scan buildChangelogScan() {
Preconditions.checkArgument(
readConf.snapshotId() == null
&& readConf.asOfTimestamp() == null
&& readConf.branch() == null
&& readConf.tag() == null,
"Cannot set neither %s, %s, %s and %s for changelogs",
SparkReadOptions.SNAPSHOT_ID,
SparkReadOptions.AS_OF_TIMESTAMP,
SparkReadOptions.BRANCH,
SparkReadOptions.TAG);
Long startSnapshotId = readConf.startSnapshotId();
Long endSnapshotId = readConf.endSnapshotId();
Long startTimestamp = readConf.startTimestamp();
Long endTimestamp = readConf.endTimestamp();
Preconditions.checkArgument(
!(startSnapshotId != null && startTimestamp != null),
"Cannot set both %s and %s for changelogs",
SparkReadOptions.START_SNAPSHOT_ID,
SparkReadOptions.START_TIMESTAMP);
Preconditions.checkArgument(
!(endSnapshotId != null && endTimestamp != null),
"Cannot set both %s and %s for changelogs",
SparkReadOptions.END_SNAPSHOT_ID,
SparkReadOptions.END_TIMESTAMP);
if (startTimestamp != null && endTimestamp != null) {
Preconditions.checkArgument(
startTimestamp < endTimestamp,
"Cannot set %s to be greater than %s for changelogs",
SparkReadOptions.START_TIMESTAMP,
SparkReadOptions.END_TIMESTAMP);
}
boolean emptyScan = false;
if (startTimestamp != null) {
startSnapshotId = getStartSnapshotId(startTimestamp);
if (startSnapshotId == null && endTimestamp == null) {
emptyScan = true;
}
}
if (endTimestamp != null) {
endSnapshotId = SnapshotUtil.nullableSnapshotIdAsOfTime(table, endTimestamp);
if ((startSnapshotId == null && endSnapshotId == null)
|| (startSnapshotId != null && startSnapshotId.equals(endSnapshotId))) {
emptyScan = true;
}
}
Schema expectedSchema = schemaWithMetadataColumns();
IncrementalChangelogScan scan =
table
.newIncrementalChangelogScan()
.caseSensitive(caseSensitive)
.filter(filterExpression())
.project(expectedSchema);
if (startSnapshotId != null) {
scan = scan.fromSnapshotExclusive(startSnapshotId);
}
if (endSnapshotId != null) {
scan = scan.toSnapshot(endSnapshotId);
}
scan = configureSplitPlanning(scan);
return new SparkChangelogScan(
spark, table, scan, readConf, expectedSchema, filterExpressions, emptyScan);
}
private Long getStartSnapshotId(Long startTimestamp) {
Snapshot oldestSnapshotAfter = SnapshotUtil.oldestAncestorAfter(table, startTimestamp);
if (oldestSnapshotAfter == null) {
return null;
} else if (oldestSnapshotAfter.timestampMillis() == startTimestamp) {
return oldestSnapshotAfter.snapshotId();
} else {
return oldestSnapshotAfter.parentId();
}
}
public Scan buildMergeOnReadScan() {
Preconditions.checkArgument(
readConf.snapshotId() == null && readConf.asOfTimestamp() == null && readConf.tag() == null,
"Cannot set time travel options %s, %s, %s for row-level command scans",
SparkReadOptions.SNAPSHOT_ID,
SparkReadOptions.AS_OF_TIMESTAMP,
SparkReadOptions.TAG);
Preconditions.checkArgument(
readConf.startSnapshotId() == null && readConf.endSnapshotId() == null,
"Cannot set incremental scan options %s and %s for row-level command scans",
SparkReadOptions.START_SNAPSHOT_ID,
SparkReadOptions.END_SNAPSHOT_ID);
Snapshot snapshot = SnapshotUtil.latestSnapshot(table, readConf.branch());
if (snapshot == null) {
return new SparkBatchQueryScan(
spark, table, null, readConf, schemaWithMetadataColumns(), filterExpressions);
}
// remember the current snapshot ID for commit validation
long snapshotId = snapshot.snapshotId();
CaseInsensitiveStringMap adjustedOptions =
Spark3Util.setOption(SparkReadOptions.SNAPSHOT_ID, Long.toString(snapshotId), options);
SparkReadConf adjustedReadConf =
new SparkReadConf(spark, table, readConf.branch(), adjustedOptions);
Schema expectedSchema = schemaWithMetadataColumns();
BatchScan scan =
table
.newBatchScan()
.useSnapshot(snapshotId)
.caseSensitive(caseSensitive)
.filter(filterExpression())
.project(expectedSchema);
scan = configureSplitPlanning(scan);
return new SparkBatchQueryScan(
spark, table, scan, adjustedReadConf, expectedSchema, filterExpressions);
}
public Scan buildCopyOnWriteScan() {
Snapshot snapshot = SnapshotUtil.latestSnapshot(table, readConf.branch());
if (snapshot == null) {
return new SparkCopyOnWriteScan(
spark, table, readConf, schemaWithMetadataColumns(), filterExpressions);
}
Schema expectedSchema = schemaWithMetadataColumns();
BatchScan scan =
table
.newBatchScan()
.useSnapshot(snapshot.snapshotId())
.ignoreResiduals()
.caseSensitive(caseSensitive)
.filter(filterExpression())
.project(expectedSchema);
scan = configureSplitPlanning(scan);
return new SparkCopyOnWriteScan(
spark, table, scan, snapshot, readConf, expectedSchema, filterExpressions);
}
private > T configureSplitPlanning(T scan) {
T configuredScan = scan;
Long splitSize = readConf.splitSizeOption();
if (splitSize != null) {
configuredScan = configuredScan.option(TableProperties.SPLIT_SIZE, String.valueOf(splitSize));
}
Integer splitLookback = readConf.splitLookbackOption();
if (splitLookback != null) {
configuredScan =
configuredScan.option(TableProperties.SPLIT_LOOKBACK, String.valueOf(splitLookback));
}
Long splitOpenFileCost = readConf.splitOpenFileCostOption();
if (splitOpenFileCost != null) {
configuredScan =
configuredScan.option(
TableProperties.SPLIT_OPEN_FILE_COST, String.valueOf(splitOpenFileCost));
}
return configuredScan;
}
@Override
public Statistics estimateStatistics() {
return ((SupportsReportStatistics) build()).estimateStatistics();
}
@Override
public StructType readSchema() {
return build().readSchema();
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy