All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.iceberg.spark.ComputeUpdateIterator Maven / Gradle / Ivy

The newest version!
/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 * KIND, either express or implied.  See the License for the
 * specific language governing permissions and limitations
 * under the License.
 */
package org.apache.iceberg.spark;

import java.util.Arrays;
import java.util.Iterator;
import java.util.List;
import java.util.stream.Collectors;
import org.apache.iceberg.relocated.com.google.common.base.Preconditions;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
import org.apache.spark.sql.catalyst.expressions.GenericRow;
import org.apache.spark.sql.types.StructType;

/**
 * An iterator that finds delete/insert rows which represent an update, and converts them into
 * update records from changelog tables within a single Spark task. It assumes that rows are sorted
 * by identifier columns and change type.
 *
 * 

For example, these two rows * *

    *
  • (id=1, data='a', op='DELETE') *
  • (id=1, data='b', op='INSERT') *
* *

will be marked as update-rows: * *

    *
  • (id=1, data='a', op='UPDATE_BEFORE') *
  • (id=1, data='b', op='UPDATE_AFTER') *
*/ public class ComputeUpdateIterator extends ChangelogIterator { private final String[] identifierFields; private final List identifierFieldIdx; private Row cachedRow = null; ComputeUpdateIterator(Iterator rowIterator, StructType rowType, String[] identifierFields) { super(rowIterator, rowType); this.identifierFieldIdx = Arrays.stream(identifierFields).map(rowType::fieldIndex).collect(Collectors.toList()); this.identifierFields = identifierFields; } @Override public boolean hasNext() { if (cachedRow != null) { return true; } return rowIterator().hasNext(); } @Override public Row next() { // if there is an updated cached row, return it directly if (cachedUpdateRecord()) { Row row = cachedRow; cachedRow = null; return row; } // either a cached record which is not an UPDATE or the next record in the iterator. Row currentRow = currentRow(); if (changeType(currentRow).equals(DELETE) && rowIterator().hasNext()) { Row nextRow = rowIterator().next(); cachedRow = nextRow; if (sameLogicalRow(currentRow, nextRow)) { Preconditions.checkState( changeType(nextRow).equals(INSERT), "Cannot compute updates because there are multiple rows with the same identifier" + " fields([%s]). Please make sure the rows are unique.", String.join(",", identifierFields)); currentRow = modify(currentRow, changeTypeIndex(), UPDATE_BEFORE); cachedRow = modify(nextRow, changeTypeIndex(), UPDATE_AFTER); } } return currentRow; } private Row modify(Row row, int valueIndex, Object value) { if (row instanceof GenericRow) { GenericRow genericRow = (GenericRow) row; genericRow.values()[valueIndex] = value; return genericRow; } else { Object[] values = new Object[row.size()]; for (int index = 0; index < row.size(); index++) { values[index] = row.get(index); } values[valueIndex] = value; return RowFactory.create(values); } } private boolean cachedUpdateRecord() { return cachedRow != null && changeType(cachedRow).equals(UPDATE_AFTER); } private Row currentRow() { if (cachedRow != null) { Row row = cachedRow; cachedRow = null; return row; } else { return rowIterator().next(); } } private boolean sameLogicalRow(Row currentRow, Row nextRow) { for (int idx : identifierFieldIdx) { if (isDifferentValue(currentRow, nextRow, idx)) { return false; } } return true; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy