All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.iceberg.spark.actions.SparkShufflingDataRewriter Maven / Gradle / Ivy

The newest version!
/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 * KIND, either express or implied.  See the License for the
 * specific language governing permissions and limitations
 * under the License.
 */
package org.apache.iceberg.spark.actions;

import java.util.List;
import java.util.Map;
import java.util.Set;
import java.util.function.Function;
import org.apache.iceberg.FileScanTask;
import org.apache.iceberg.PartitionSpec;
import org.apache.iceberg.Schema;
import org.apache.iceberg.Table;
import org.apache.iceberg.relocated.com.google.common.base.Preconditions;
import org.apache.iceberg.relocated.com.google.common.collect.ImmutableSet;
import org.apache.iceberg.spark.Spark3Util;
import org.apache.iceberg.spark.SparkFunctionCatalog;
import org.apache.iceberg.spark.SparkReadOptions;
import org.apache.iceberg.spark.SparkWriteOptions;
import org.apache.iceberg.util.PropertyUtil;
import org.apache.iceberg.util.SortOrderUtil;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SparkSession;
import org.apache.spark.sql.catalyst.plans.logical.LogicalPlan;
import org.apache.spark.sql.catalyst.plans.logical.OrderAwareCoalesce;
import org.apache.spark.sql.catalyst.plans.logical.OrderAwareCoalescer;
import org.apache.spark.sql.connector.distributions.Distribution;
import org.apache.spark.sql.connector.distributions.Distributions;
import org.apache.spark.sql.connector.distributions.OrderedDistribution;
import org.apache.spark.sql.connector.expressions.SortOrder;
import org.apache.spark.sql.connector.write.RequiresDistributionAndOrdering;
import org.apache.spark.sql.execution.datasources.v2.DistributionAndOrderingUtils$;
import scala.Option;

abstract class SparkShufflingDataRewriter extends SparkSizeBasedDataRewriter {

  /**
   * The number of shuffle partitions and consequently the number of output files created by the
   * Spark sort is based on the size of the input data files used in this file rewriter. Due to
   * compression, the disk file sizes may not accurately represent the size of files in the output.
   * This parameter lets the user adjust the file size used for estimating actual output data size.
   * A factor greater than 1.0 would generate more files than we would expect based on the on-disk
   * file size. A value less than 1.0 would create fewer files than we would expect based on the
   * on-disk size.
   */
  public static final String COMPRESSION_FACTOR = "compression-factor";

  public static final double COMPRESSION_FACTOR_DEFAULT = 1.0;

  /**
   * The number of shuffle partitions to use for each output file. By default, this file rewriter
   * assumes each shuffle partition would become a separate output file. Attempting to generate
   * large output files of 512 MB or higher may strain the memory resources of the cluster as such
   * rewrites would require lots of Spark memory. This parameter can be used to further divide up
   * the data which will end up in a single file. For example, if the target file size is 2 GB, but
   * the cluster can only handle shuffles of 512 MB, this parameter could be set to 4. Iceberg will
   * use a custom coalesce operation to stitch these sorted partitions back together into a single
   * sorted file.
   *
   * 

Note using this parameter requires enabling Iceberg Spark session extensions. */ public static final String SHUFFLE_PARTITIONS_PER_FILE = "shuffle-partitions-per-file"; public static final int SHUFFLE_PARTITIONS_PER_FILE_DEFAULT = 1; private double compressionFactor; private int numShufflePartitionsPerFile; protected SparkShufflingDataRewriter(SparkSession spark, Table table) { super(spark, table); } protected abstract org.apache.iceberg.SortOrder sortOrder(); /** * Retrieves and returns the schema for the rewrite using the current table schema. * *

The schema with all columns required for correctly sorting the table. This may include * additional computed columns which are not written to the table but are used for sorting. */ protected Schema sortSchema() { return table().schema(); } protected abstract Dataset sortedDF( Dataset df, Function, Dataset> sortFunc); @Override public Set validOptions() { return ImmutableSet.builder() .addAll(super.validOptions()) .add(COMPRESSION_FACTOR) .add(SHUFFLE_PARTITIONS_PER_FILE) .build(); } @Override public void init(Map options) { super.init(options); this.compressionFactor = compressionFactor(options); this.numShufflePartitionsPerFile = numShufflePartitionsPerFile(options); } @Override public void doRewrite(String groupId, List group) { Dataset scanDF = spark() .read() .format("iceberg") .option(SparkReadOptions.SCAN_TASK_SET_ID, groupId) .load(groupId); Dataset sortedDF = sortedDF(scanDF, sortFunction(group)); sortedDF .write() .format("iceberg") .option(SparkWriteOptions.REWRITTEN_FILE_SCAN_TASK_SET_ID, groupId) .option(SparkWriteOptions.TARGET_FILE_SIZE_BYTES, writeMaxFileSize()) .option(SparkWriteOptions.USE_TABLE_DISTRIBUTION_AND_ORDERING, "false") .option(SparkWriteOptions.OUTPUT_SPEC_ID, outputSpecId()) .mode("append") .save(groupId); } private Function, Dataset> sortFunction(List group) { SortOrder[] ordering = Spark3Util.toOrdering(outputSortOrder(group)); int numShufflePartitions = numShufflePartitions(group); return (df) -> transformPlan(df, plan -> sortPlan(plan, ordering, numShufflePartitions)); } private LogicalPlan sortPlan(LogicalPlan plan, SortOrder[] ordering, int numShufflePartitions) { SparkFunctionCatalog catalog = SparkFunctionCatalog.get(); OrderedWrite write = new OrderedWrite(ordering, numShufflePartitions); LogicalPlan sortPlan = DistributionAndOrderingUtils$.MODULE$.prepareQuery(write, plan, Option.apply(catalog)); if (numShufflePartitionsPerFile == 1) { return sortPlan; } else { OrderAwareCoalescer coalescer = new OrderAwareCoalescer(numShufflePartitionsPerFile); int numOutputPartitions = numShufflePartitions / numShufflePartitionsPerFile; return new OrderAwareCoalesce(numOutputPartitions, coalescer, sortPlan); } } private Dataset transformPlan(Dataset df, Function func) { return new Dataset<>(spark(), func.apply(df.logicalPlan()), df.encoder()); } private org.apache.iceberg.SortOrder outputSortOrder(List group) { PartitionSpec spec = outputSpec(); boolean requiresRepartitioning = !group.get(0).spec().equals(spec); if (requiresRepartitioning) { // build in the requirement for partition sorting into our sort order // as the original spec for this group does not match the output spec return SortOrderUtil.buildSortOrder(sortSchema(), spec, sortOrder()); } else { return sortOrder(); } } private int numShufflePartitions(List group) { int numOutputFiles = (int) numOutputFiles((long) (inputSize(group) * compressionFactor)); return Math.max(1, numOutputFiles * numShufflePartitionsPerFile); } private double compressionFactor(Map options) { double value = PropertyUtil.propertyAsDouble(options, COMPRESSION_FACTOR, COMPRESSION_FACTOR_DEFAULT); Preconditions.checkArgument( value > 0, "'%s' is set to %s but must be > 0", COMPRESSION_FACTOR, value); return value; } private int numShufflePartitionsPerFile(Map options) { int value = PropertyUtil.propertyAsInt( options, SHUFFLE_PARTITIONS_PER_FILE, SHUFFLE_PARTITIONS_PER_FILE_DEFAULT); Preconditions.checkArgument( value > 0, "'%s' is set to %s but must be > 0", SHUFFLE_PARTITIONS_PER_FILE, value); Preconditions.checkArgument( value == 1 || Spark3Util.extensionsEnabled(spark()), "Using '%s' requires enabling Iceberg Spark session extensions", SHUFFLE_PARTITIONS_PER_FILE); return value; } private static class OrderedWrite implements RequiresDistributionAndOrdering { private final OrderedDistribution distribution; private final SortOrder[] ordering; private final int numShufflePartitions; OrderedWrite(SortOrder[] ordering, int numShufflePartitions) { this.distribution = Distributions.ordered(ordering); this.ordering = ordering; this.numShufflePartitions = numShufflePartitions; } @Override public Distribution requiredDistribution() { return distribution; } @Override public boolean distributionStrictlyRequired() { return true; } @Override public int requiredNumPartitions() { return numShufflePartitions; } @Override public SortOrder[] requiredOrdering() { return ordering; } } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy