org.apache.iceberg.spark.source.BaseBatchReader Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of iceberg-spark-3.5_2.13 Show documentation
Show all versions of iceberg-spark-3.5_2.13 Show documentation
A table format for huge analytic datasets
The newest version!
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.apache.iceberg.spark.source;
import java.util.Map;
import java.util.Set;
import org.apache.iceberg.FileFormat;
import org.apache.iceberg.MetadataColumns;
import org.apache.iceberg.ScanTask;
import org.apache.iceberg.ScanTaskGroup;
import org.apache.iceberg.Schema;
import org.apache.iceberg.Table;
import org.apache.iceberg.expressions.Expression;
import org.apache.iceberg.io.CloseableIterable;
import org.apache.iceberg.io.InputFile;
import org.apache.iceberg.orc.ORC;
import org.apache.iceberg.parquet.Parquet;
import org.apache.iceberg.relocated.com.google.common.collect.Sets;
import org.apache.iceberg.spark.data.vectorized.VectorizedSparkOrcReaders;
import org.apache.iceberg.spark.data.vectorized.VectorizedSparkParquetReaders;
import org.apache.iceberg.types.TypeUtil;
import org.apache.spark.sql.vectorized.ColumnarBatch;
abstract class BaseBatchReader extends BaseReader {
private final int batchSize;
BaseBatchReader(
Table table,
ScanTaskGroup taskGroup,
Schema tableSchema,
Schema expectedSchema,
boolean caseSensitive,
int batchSize) {
super(table, taskGroup, tableSchema, expectedSchema, caseSensitive);
this.batchSize = batchSize;
}
protected CloseableIterable newBatchIterable(
InputFile inputFile,
FileFormat format,
long start,
long length,
Expression residual,
Map idToConstant,
SparkDeleteFilter deleteFilter) {
switch (format) {
case PARQUET:
return newParquetIterable(inputFile, start, length, residual, idToConstant, deleteFilter);
case ORC:
return newOrcIterable(inputFile, start, length, residual, idToConstant);
default:
throw new UnsupportedOperationException(
"Format: " + format + " not supported for batched reads");
}
}
private CloseableIterable newParquetIterable(
InputFile inputFile,
long start,
long length,
Expression residual,
Map idToConstant,
SparkDeleteFilter deleteFilter) {
// get required schema if there are deletes
Schema requiredSchema = deleteFilter != null ? deleteFilter.requiredSchema() : expectedSchema();
return Parquet.read(inputFile)
.project(requiredSchema)
.split(start, length)
.createBatchedReaderFunc(
fileSchema ->
VectorizedSparkParquetReaders.buildReader(
requiredSchema, fileSchema, idToConstant, deleteFilter))
.recordsPerBatch(batchSize)
.filter(residual)
.caseSensitive(caseSensitive())
// Spark eagerly consumes the batches. So the underlying memory allocated could be reused
// without worrying about subsequent reads clobbering over each other. This improves
// read performance as every batch read doesn't have to pay the cost of allocating memory.
.reuseContainers()
.withNameMapping(nameMapping())
.build();
}
private CloseableIterable newOrcIterable(
InputFile inputFile,
long start,
long length,
Expression residual,
Map idToConstant) {
Set constantFieldIds = idToConstant.keySet();
Set metadataFieldIds = MetadataColumns.metadataFieldIds();
Sets.SetView constantAndMetadataFieldIds =
Sets.union(constantFieldIds, metadataFieldIds);
Schema schemaWithoutConstantAndMetadataFields =
TypeUtil.selectNot(expectedSchema(), constantAndMetadataFieldIds);
return ORC.read(inputFile)
.project(schemaWithoutConstantAndMetadataFields)
.split(start, length)
.createBatchedReaderFunc(
fileSchema ->
VectorizedSparkOrcReaders.buildReader(expectedSchema(), fileSchema, idToConstant))
.recordsPerBatch(batchSize)
.filter(residual)
.caseSensitive(caseSensitive())
.withNameMapping(nameMapping())
.build();
}
}