org.apache.iceberg.spark.source.RowDataRewriter Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of iceberg-spark Show documentation
Show all versions of iceberg-spark Show documentation
A table format for huge analytic datasets
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.apache.iceberg.spark.source;
import java.io.Serializable;
import java.util.Collection;
import java.util.List;
import java.util.Locale;
import java.util.Map;
import java.util.stream.Collectors;
import org.apache.iceberg.CombinedScanTask;
import org.apache.iceberg.DataFile;
import org.apache.iceberg.FileFormat;
import org.apache.iceberg.PartitionSpec;
import org.apache.iceberg.Schema;
import org.apache.iceberg.Table;
import org.apache.iceberg.TableProperties;
import org.apache.iceberg.io.OutputFileFactory;
import org.apache.iceberg.io.TaskWriter;
import org.apache.iceberg.io.UnpartitionedWriter;
import org.apache.iceberg.relocated.com.google.common.collect.Lists;
import org.apache.iceberg.spark.SparkSchemaUtil;
import org.apache.iceberg.util.PropertyUtil;
import org.apache.spark.TaskContext;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.broadcast.Broadcast;
import org.apache.spark.sql.catalyst.InternalRow;
import org.apache.spark.sql.types.StructType;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
public class RowDataRewriter implements Serializable {
private static final Logger LOG = LoggerFactory.getLogger(RowDataRewriter.class);
private final Broadcast tableBroadcast;
private final PartitionSpec spec;
private final FileFormat format;
private final boolean caseSensitive;
public RowDataRewriter(Broadcast tableBroadcast, PartitionSpec spec, boolean caseSensitive) {
this.tableBroadcast = tableBroadcast;
this.spec = spec;
this.caseSensitive = caseSensitive;
Table table = tableBroadcast.value();
String formatString = table.properties().getOrDefault(
TableProperties.DEFAULT_FILE_FORMAT, TableProperties.DEFAULT_FILE_FORMAT_DEFAULT);
this.format = FileFormat.valueOf(formatString.toUpperCase(Locale.ENGLISH));
}
public List rewriteDataForTasks(JavaRDD taskRDD) {
JavaRDD> dataFilesRDD = taskRDD.map(this::rewriteDataForTask);
return dataFilesRDD.collect().stream()
.flatMap(Collection::stream)
.collect(Collectors.toList());
}
private List rewriteDataForTask(CombinedScanTask task) throws Exception {
TaskContext context = TaskContext.get();
int partitionId = context.partitionId();
long taskId = context.taskAttemptId();
Table table = tableBroadcast.value();
Schema schema = table.schema();
Map properties = table.properties();
RowDataReader dataReader = new RowDataReader(task, table, schema, caseSensitive);
StructType structType = SparkSchemaUtil.convert(schema);
SparkAppenderFactory appenderFactory = SparkAppenderFactory.builderFor(table, schema, structType)
.spec(spec)
.build();
OutputFileFactory fileFactory = OutputFileFactory.builderFor(table, partitionId, taskId)
.defaultSpec(spec)
.format(format)
.build();
TaskWriter writer;
if (spec.isUnpartitioned()) {
writer = new UnpartitionedWriter<>(spec, format, appenderFactory, fileFactory, table.io(),
Long.MAX_VALUE);
} else if (PropertyUtil.propertyAsBoolean(properties,
TableProperties.SPARK_WRITE_PARTITIONED_FANOUT_ENABLED,
TableProperties.SPARK_WRITE_PARTITIONED_FANOUT_ENABLED_DEFAULT)) {
writer = new SparkPartitionedFanoutWriter(
spec, format, appenderFactory, fileFactory, table.io(), Long.MAX_VALUE, schema,
structType);
} else {
writer = new SparkPartitionedWriter(
spec, format, appenderFactory, fileFactory, table.io(), Long.MAX_VALUE, schema,
structType);
}
try {
while (dataReader.next()) {
InternalRow row = dataReader.get();
writer.write(row);
}
dataReader.close();
dataReader = null;
writer.close();
return Lists.newArrayList(writer.dataFiles());
} catch (Throwable originalThrowable) {
try {
LOG.error("Aborting task", originalThrowable);
context.markTaskFailed(originalThrowable);
LOG.error("Aborting commit for partition {} (task {}, attempt {}, stage {}.{})",
partitionId, taskId, context.attemptNumber(), context.stageId(), context.stageAttemptNumber());
if (dataReader != null) {
dataReader.close();
}
writer.abort();
LOG.error("Aborted commit for partition {} (task {}, attempt {}, stage {}.{})",
partitionId, taskId, context.taskAttemptId(), context.stageId(), context.stageAttemptNumber());
} catch (Throwable inner) {
if (originalThrowable != inner) {
originalThrowable.addSuppressed(inner);
LOG.warn("Suppressing exception in catch: {}", inner.getMessage(), inner);
}
}
if (originalThrowable instanceof Exception) {
throw originalThrowable;
} else {
throw new RuntimeException(originalThrowable);
}
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy