org.apache.iceberg.actions.RewriteManifestsAction Maven / Gradle / Ivy
Show all versions of iceberg-spark Show documentation
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.apache.iceberg.actions;
import java.io.IOException;
import java.util.Collections;
import java.util.List;
import java.util.UUID;
import java.util.function.Function;
import java.util.function.Predicate;
import java.util.stream.Collectors;
import org.apache.hadoop.fs.Path;
import org.apache.iceberg.DataFile;
import org.apache.iceberg.FileFormat;
import org.apache.iceberg.HasTableOperations;
import org.apache.iceberg.ManifestFile;
import org.apache.iceberg.ManifestFiles;
import org.apache.iceberg.ManifestWriter;
import org.apache.iceberg.MetadataTableType;
import org.apache.iceberg.PartitionSpec;
import org.apache.iceberg.RewriteManifests;
import org.apache.iceberg.Snapshot;
import org.apache.iceberg.Table;
import org.apache.iceberg.TableOperations;
import org.apache.iceberg.TableProperties;
import org.apache.iceberg.exceptions.ValidationException;
import org.apache.iceberg.io.FileIO;
import org.apache.iceberg.io.OutputFile;
import org.apache.iceberg.relocated.com.google.common.base.Preconditions;
import org.apache.iceberg.relocated.com.google.common.collect.ImmutableList;
import org.apache.iceberg.relocated.com.google.common.collect.Iterables;
import org.apache.iceberg.relocated.com.google.common.collect.Lists;
import org.apache.iceberg.spark.SparkDataFile;
import org.apache.iceberg.spark.SparkUtil;
import org.apache.iceberg.types.Types;
import org.apache.iceberg.util.PropertyUtil;
import org.apache.iceberg.util.Tasks;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.MapFunction;
import org.apache.spark.api.java.function.MapPartitionsFunction;
import org.apache.spark.broadcast.Broadcast;
import org.apache.spark.sql.Column;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Encoder;
import org.apache.spark.sql.Encoders;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SparkSession;
import org.apache.spark.sql.internal.SQLConf;
import org.apache.spark.sql.types.StructType;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
/**
* An action that rewrites manifests in a distributed manner and co-locates metadata for partitions.
*
* By default, this action rewrites all manifests for the current partition spec and writes the result
* to the metadata folder. The behavior can be modified by passing a custom predicate to {@link #rewriteIf(Predicate)}
* and a custom spec id to {@link #specId(int)}. In addition, there is a way to configure a custom location
* for new manifests via {@link #stagingLocation}.
*/
public class RewriteManifestsAction
extends BaseSnapshotUpdateAction {
private static final Logger LOG = LoggerFactory.getLogger(RewriteManifestsAction.class);
private final SparkSession spark;
private final JavaSparkContext sparkContext;
private final Encoder manifestEncoder;
private final Table table;
private final int formatVersion;
private final FileIO fileIO;
private final long targetManifestSizeBytes;
private PartitionSpec spec = null;
private Predicate predicate = manifest -> true;
private String stagingLocation = null;
private boolean useCaching = true;
RewriteManifestsAction(SparkSession spark, Table table) {
this.spark = spark;
this.sparkContext = new JavaSparkContext(spark.sparkContext());
this.manifestEncoder = Encoders.javaSerialization(ManifestFile.class);
this.table = table;
this.spec = table.spec();
this.targetManifestSizeBytes = PropertyUtil.propertyAsLong(
table.properties(),
TableProperties.MANIFEST_TARGET_SIZE_BYTES,
TableProperties.MANIFEST_TARGET_SIZE_BYTES_DEFAULT);
this.fileIO = SparkUtil.serializableFileIO(table);
// default the staging location to the metadata location
TableOperations ops = ((HasTableOperations) table).operations();
Path metadataFilePath = new Path(ops.metadataFileLocation("file"));
this.stagingLocation = metadataFilePath.getParent().toString();
// use the current table format version for new manifests
this.formatVersion = ops.current().formatVersion();
}
@Override
protected RewriteManifestsAction self() {
return this;
}
@Override
protected Table table() {
return table;
}
public RewriteManifestsAction specId(int specId) {
Preconditions.checkArgument(table.specs().containsKey(specId), "Invalid spec id %d", specId);
this.spec = table.specs().get(specId);
return this;
}
/**
* Rewrites only manifests that match the given predicate.
*
* @param newPredicate a predicate
* @return this for method chaining
*/
public RewriteManifestsAction rewriteIf(Predicate newPredicate) {
this.predicate = newPredicate;
return this;
}
/**
* Passes a location where the manifests should be written.
*
* @param newStagingLocation a staging location
* @return this for method chaining
*/
public RewriteManifestsAction stagingLocation(String newStagingLocation) {
this.stagingLocation = newStagingLocation;
return this;
}
/**
* Configures whether the action should cache manifest entries used in multiple jobs.
*
* @param newUseCaching a flag whether to use caching
* @return this for method chaining
*/
public RewriteManifestsAction useCaching(boolean newUseCaching) {
this.useCaching = newUseCaching;
return this;
}
@Override
public RewriteManifestsActionResult execute() {
List matchingManifests = findMatchingManifests();
if (matchingManifests.isEmpty()) {
return RewriteManifestsActionResult.empty();
}
long totalSizeBytes = 0L;
int numEntries = 0;
for (ManifestFile manifest : matchingManifests) {
ValidationException.check(hasFileCounts(manifest), "No file counts in manifest: " + manifest.path());
totalSizeBytes += manifest.length();
numEntries += manifest.addedFilesCount() + manifest.existingFilesCount() + manifest.deletedFilesCount();
}
int targetNumManifests = targetNumManifests(totalSizeBytes);
int targetNumManifestEntries = targetNumManifestEntries(numEntries, targetNumManifests);
Dataset manifestEntryDF = buildManifestEntryDF(matchingManifests);
List newManifests;
if (spec.fields().size() < 1) {
newManifests = writeManifestsForUnpartitionedTable(manifestEntryDF, targetNumManifests);
} else {
newManifests = writeManifestsForPartitionedTable(manifestEntryDF, targetNumManifests, targetNumManifestEntries);
}
replaceManifests(matchingManifests, newManifests);
return new RewriteManifestsActionResult(matchingManifests, newManifests);
}
private Dataset buildManifestEntryDF(List manifests) {
Dataset manifestDF = spark
.createDataset(Lists.transform(manifests, ManifestFile::path), Encoders.STRING())
.toDF("manifest");
String entriesMetadataTable = metadataTableName(MetadataTableType.ENTRIES);
Dataset manifestEntryDF = spark.read().format("iceberg")
.load(entriesMetadataTable)
.filter("status < 2") // select only live entries
.selectExpr("input_file_name() as manifest", "snapshot_id", "sequence_number", "data_file");
Column joinCond = manifestDF.col("manifest").equalTo(manifestEntryDF.col("manifest"));
return manifestEntryDF
.join(manifestDF, joinCond, "left_semi")
.select("snapshot_id", "sequence_number", "data_file");
}
private List writeManifestsForUnpartitionedTable(Dataset manifestEntryDF, int numManifests) {
Broadcast io = sparkContext.broadcast(fileIO);
StructType sparkType = (StructType) manifestEntryDF.schema().apply("data_file").dataType();
// we rely only on the target number of manifests for unpartitioned tables
// as we should not worry about having too much metadata per partition
long maxNumManifestEntries = Long.MAX_VALUE;
return manifestEntryDF
.repartition(numManifests)
.mapPartitions(
toManifests(io, maxNumManifestEntries, stagingLocation, formatVersion, spec, sparkType),
manifestEncoder
)
.collectAsList();
}
private List writeManifestsForPartitionedTable(
Dataset manifestEntryDF, int numManifests,
int targetNumManifestEntries) {
Broadcast io = sparkContext.broadcast(fileIO);
StructType sparkType = (StructType) manifestEntryDF.schema().apply("data_file").dataType();
// we allow the actual size of manifests to be 10% higher if the estimation is not precise enough
long maxNumManifestEntries = (long) (1.1 * targetNumManifestEntries);
return withReusableDS(manifestEntryDF, df -> {
Column partitionColumn = df.col("data_file.partition");
return df.repartitionByRange(numManifests, partitionColumn)
.sortWithinPartitions(partitionColumn)
.mapPartitions(
toManifests(io, maxNumManifestEntries, stagingLocation, formatVersion, spec, sparkType),
manifestEncoder
)
.collectAsList();
});
}
private U withReusableDS(Dataset ds, Function, U> func) {
Dataset reusableDS;
if (useCaching) {
reusableDS = ds.cache();
} else {
int parallelism = SQLConf.get().numShufflePartitions();
reusableDS = ds.repartition(parallelism).map((MapFunction) value -> value, ds.exprEnc());
}
try {
return func.apply(reusableDS);
} finally {
if (useCaching) {
reusableDS.unpersist(false);
}
}
}
private List findMatchingManifests() {
Snapshot currentSnapshot = table.currentSnapshot();
if (currentSnapshot == null) {
return ImmutableList.of();
}
return currentSnapshot.dataManifests().stream()
.filter(manifest -> manifest.partitionSpecId() == spec.specId() && predicate.test(manifest))
.collect(Collectors.toList());
}
private int targetNumManifests(long totalSizeBytes) {
return (int) ((totalSizeBytes + targetManifestSizeBytes - 1) / targetManifestSizeBytes);
}
private int targetNumManifestEntries(int numEntries, int numManifests) {
return (numEntries + numManifests - 1) / numManifests;
}
private boolean hasFileCounts(ManifestFile manifest) {
return manifest.addedFilesCount() != null &&
manifest.existingFilesCount() != null &&
manifest.deletedFilesCount() != null;
}
private void replaceManifests(Iterable deletedManifests, Iterable addedManifests) {
try {
boolean snapshotIdInheritanceEnabled = PropertyUtil.propertyAsBoolean(
table.properties(),
TableProperties.SNAPSHOT_ID_INHERITANCE_ENABLED,
TableProperties.SNAPSHOT_ID_INHERITANCE_ENABLED_DEFAULT);
RewriteManifests rewriteManifests = table.rewriteManifests();
deletedManifests.forEach(rewriteManifests::deleteManifest);
addedManifests.forEach(rewriteManifests::addManifest);
commit(rewriteManifests);
if (!snapshotIdInheritanceEnabled) {
// delete new manifests as they were rewritten before the commit
deleteFiles(Iterables.transform(addedManifests, ManifestFile::path));
}
} catch (Exception e) {
// delete all new manifests because the rewrite failed
deleteFiles(Iterables.transform(addedManifests, ManifestFile::path));
throw e;
}
}
private void deleteFiles(Iterable locations) {
Tasks.foreach(locations)
.noRetry()
.suppressFailureWhenFinished()
.onFailure((location, exc) -> LOG.warn("Failed to delete: {}", location, exc))
.run(fileIO::deleteFile);
}
private static ManifestFile writeManifest(
List rows, int startIndex, int endIndex, Broadcast io,
String location, int format, PartitionSpec spec, StructType sparkType) throws IOException {
String manifestName = "optimized-m-" + UUID.randomUUID();
Path manifestPath = new Path(location, manifestName);
OutputFile outputFile = io.value().newOutputFile(FileFormat.AVRO.addExtension(manifestPath.toString()));
Types.StructType dataFileType = DataFile.getType(spec.partitionType());
SparkDataFile wrapper = new SparkDataFile(dataFileType, sparkType);
ManifestWriter writer = ManifestFiles.write(format, spec, outputFile, null);
try {
for (int index = startIndex; index < endIndex; index++) {
Row row = rows.get(index);
long snapshotId = row.getLong(0);
long sequenceNumber = row.getLong(1);
Row file = row.getStruct(2);
writer.existing(wrapper.wrap(file), snapshotId, sequenceNumber);
}
} finally {
writer.close();
}
return writer.toManifestFile();
}
private static MapPartitionsFunction toManifests(
Broadcast io, long maxNumManifestEntries, String location,
int format, PartitionSpec spec, StructType sparkType) {
return (MapPartitionsFunction) rows -> {
List rowsAsList = Lists.newArrayList(rows);
if (rowsAsList.isEmpty()) {
return Collections.emptyIterator();
}
List manifests = Lists.newArrayList();
if (rowsAsList.size() <= maxNumManifestEntries) {
manifests.add(writeManifest(rowsAsList, 0, rowsAsList.size(), io, location, format, spec, sparkType));
} else {
int midIndex = rowsAsList.size() / 2;
manifests.add(writeManifest(rowsAsList, 0, midIndex, io, location, format, spec, sparkType));
manifests.add(writeManifest(rowsAsList, midIndex, rowsAsList.size(), io, location, format, spec, sparkType));
}
return manifests.iterator();
};
}
}