All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.iceberg.spark.SparkSchemaUtil Maven / Gradle / Ivy

There is a newer version: 1.7.0
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 * KIND, either express or implied.  See the License for the
 * specific language governing permissions and limitations
 * under the License.
 */

package org.apache.iceberg.spark;

import java.util.Collection;
import java.util.Collections;
import java.util.List;
import java.util.Set;
import org.apache.iceberg.PartitionSpec;
import org.apache.iceberg.Schema;
import org.apache.iceberg.expressions.Binder;
import org.apache.iceberg.expressions.Expression;
import org.apache.iceberg.relocated.com.google.common.base.Splitter;
import org.apache.iceberg.relocated.com.google.common.collect.ImmutableSet;
import org.apache.iceberg.relocated.com.google.common.collect.Lists;
import org.apache.iceberg.types.Type;
import org.apache.iceberg.types.TypeUtil;
import org.apache.iceberg.types.Types;
import org.apache.spark.sql.AnalysisException;
import org.apache.spark.sql.SparkSession;
import org.apache.spark.sql.catalog.Column;
import org.apache.spark.sql.types.DataType;
import org.apache.spark.sql.types.StructType;

/**
 * Helper methods for working with Spark/Hive metadata.
 */
public class SparkSchemaUtil {
  private SparkSchemaUtil() {
  }

  /**
   * Returns a {@link Schema} for the given table with fresh field ids.
   * 

* This creates a Schema for an existing table by looking up the table's schema with Spark and * converting that schema. Spark/Hive partition columns are included in the schema. * * @param spark a Spark session * @param name a table name and (optional) database * @return a Schema for the table, if found */ public static Schema schemaForTable(SparkSession spark, String name) { StructType sparkType = spark.table(name).schema(); Type converted = SparkTypeVisitor.visit(sparkType, new SparkTypeToType(sparkType)); return new Schema(converted.asNestedType().asStructType().fields()); } /** * Returns a {@link PartitionSpec} for the given table. *

* This creates a partition spec for an existing table by looking up the table's schema and * creating a spec with identity partitions for each partition column. * * @param spark a Spark session * @param name a table name and (optional) database * @return a PartitionSpec for the table * @throws AnalysisException if thrown by the Spark catalog */ public static PartitionSpec specForTable(SparkSession spark, String name) throws AnalysisException { List parts = Lists.newArrayList(Splitter.on('.').limit(2).split(name)); String db = parts.size() == 1 ? "default" : parts.get(0); String table = parts.get(parts.size() == 1 ? 0 : 1); PartitionSpec spec = identitySpec( schemaForTable(spark, name), spark.catalog().listColumns(db, table).collectAsList()); return spec == null ? PartitionSpec.unpartitioned() : spec; } /** * Convert a {@link Schema} to a {@link DataType Spark type}. * * @param schema a Schema * @return the equivalent Spark type * @throws IllegalArgumentException if the type cannot be converted to Spark */ public static StructType convert(Schema schema) { return (StructType) TypeUtil.visit(schema, new TypeToSparkType()); } /** * Convert a {@link Type} to a {@link DataType Spark type}. * * @param type a Type * @return the equivalent Spark type * @throws IllegalArgumentException if the type cannot be converted to Spark */ public static DataType convert(Type type) { return TypeUtil.visit(type, new TypeToSparkType()); } /** * Convert a Spark {@link StructType struct} to a {@link Schema} with new field ids. *

* This conversion assigns fresh ids. *

* Some data types are represented as the same Spark type. These are converted to a default type. *

* To convert using a reference schema for field ids and ambiguous types, use * {@link #convert(Schema, StructType)}. * * @param sparkType a Spark StructType * @return the equivalent Schema * @throws IllegalArgumentException if the type cannot be converted */ public static Schema convert(StructType sparkType) { Type converted = SparkTypeVisitor.visit(sparkType, new SparkTypeToType(sparkType)); return new Schema(converted.asNestedType().asStructType().fields()); } /** * Convert a Spark {@link DataType struct} to a {@link Type} with new field ids. *

* This conversion assigns fresh ids. *

* Some data types are represented as the same Spark type. These are converted to a default type. *

* To convert using a reference schema for field ids and ambiguous types, use * {@link #convert(Schema, StructType)}. * * @param sparkType a Spark DataType * @return the equivalent Type * @throws IllegalArgumentException if the type cannot be converted */ public static Type convert(DataType sparkType) { return SparkTypeVisitor.visit(sparkType, new SparkTypeToType()); } /** * Convert a Spark {@link StructType struct} to a {@link Schema} based on the given schema. *

* This conversion does not assign new ids; it uses ids from the base schema. *

* Data types, field order, and nullability will match the spark type. This conversion may return * a schema that is not compatible with base schema. * * @param baseSchema a Schema on which conversion is based * @param sparkType a Spark StructType * @return the equivalent Schema * @throws IllegalArgumentException if the type cannot be converted or there are missing ids */ public static Schema convert(Schema baseSchema, StructType sparkType) { // convert to a type with fresh ids Types.StructType struct = SparkTypeVisitor.visit(sparkType, new SparkTypeToType(sparkType)).asStructType(); // reassign ids to match the base schema Schema schema = TypeUtil.reassignIds(new Schema(struct.fields()), baseSchema); // fix types that can't be represented in Spark (UUID and Fixed) return FixupTypes.fixup(schema, baseSchema); } /** * Prune columns from a {@link Schema} using a {@link StructType Spark type} projection. *

* This requires that the Spark type is a projection of the Schema. Nullability and types must * match. * * @param schema a Schema * @param requestedType a projection of the Spark representation of the Schema * @return a Schema corresponding to the Spark projection * @throws IllegalArgumentException if the Spark type does not match the Schema */ public static Schema prune(Schema schema, StructType requestedType) { return new Schema(TypeUtil.visit(schema, new PruneColumnsWithoutReordering(requestedType, ImmutableSet.of())) .asNestedType() .asStructType() .fields()); } /** * Prune columns from a {@link Schema} using a {@link StructType Spark type} projection. *

* This requires that the Spark type is a projection of the Schema. Nullability and types must * match. *

* The filters list of {@link Expression} is used to ensure that columns referenced by filters * are projected. * * @param schema a Schema * @param requestedType a projection of the Spark representation of the Schema * @param filters a list of filters * @return a Schema corresponding to the Spark projection * @throws IllegalArgumentException if the Spark type does not match the Schema */ public static Schema prune(Schema schema, StructType requestedType, List filters) { Set filterRefs = Binder.boundReferences(schema.asStruct(), filters, true); return new Schema(TypeUtil.visit(schema, new PruneColumnsWithoutReordering(requestedType, filterRefs)) .asNestedType() .asStructType() .fields()); } /** * Prune columns from a {@link Schema} using a {@link StructType Spark type} projection. *

* This requires that the Spark type is a projection of the Schema. Nullability and types must * match. *

* The filters list of {@link Expression} is used to ensure that columns referenced by filters * are projected. * * @param schema a Schema * @param requestedType a projection of the Spark representation of the Schema * @param filter a filters * @return a Schema corresponding to the Spark projection * @throws IllegalArgumentException if the Spark type does not match the Schema */ public static Schema prune(Schema schema, StructType requestedType, Expression filter, boolean caseSensitive) { Set filterRefs = Binder.boundReferences(schema.asStruct(), Collections.singletonList(filter), caseSensitive); return new Schema(TypeUtil.visit(schema, new PruneColumnsWithoutReordering(requestedType, filterRefs)) .asNestedType() .asStructType() .fields()); } private static PartitionSpec identitySpec(Schema schema, Collection columns) { List names = Lists.newArrayList(); for (Column column : columns) { if (column.isPartition()) { names.add(column.name()); } } return identitySpec(schema, names); } private static PartitionSpec identitySpec(Schema schema, List partitionNames) { if (partitionNames == null || partitionNames.isEmpty()) { return null; } PartitionSpec.Builder builder = PartitionSpec.builderFor(schema); for (String partitionName : partitionNames) { builder.identity(partitionName); } return builder.build(); } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy