org.apache.iceberg.spark.data.SparkAvroWriter Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of iceberg-spark Show documentation
Show all versions of iceberg-spark Show documentation
A table format for huge analytic datasets
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.apache.iceberg.spark.data;
import java.io.IOException;
import java.util.List;
import java.util.stream.Collectors;
import java.util.stream.Stream;
import org.apache.avro.LogicalType;
import org.apache.avro.LogicalTypes;
import org.apache.avro.Schema;
import org.apache.avro.io.DatumWriter;
import org.apache.avro.io.Encoder;
import org.apache.iceberg.avro.ValueWriter;
import org.apache.iceberg.avro.ValueWriters;
import org.apache.iceberg.relocated.com.google.common.base.Preconditions;
import org.apache.spark.sql.catalyst.InternalRow;
import org.apache.spark.sql.types.ArrayType;
import org.apache.spark.sql.types.ByteType;
import org.apache.spark.sql.types.DataType;
import org.apache.spark.sql.types.MapType;
import org.apache.spark.sql.types.ShortType;
import org.apache.spark.sql.types.StructField;
import org.apache.spark.sql.types.StructType;
public class SparkAvroWriter implements DatumWriter {
private final StructType dsSchema;
private ValueWriter writer = null;
public SparkAvroWriter(StructType dsSchema) {
this.dsSchema = dsSchema;
}
@Override
@SuppressWarnings("unchecked")
public void setSchema(Schema schema) {
this.writer = (ValueWriter) AvroWithSparkSchemaVisitor
.visit(dsSchema, schema, new WriteBuilder());
}
@Override
public void write(InternalRow datum, Encoder out) throws IOException {
writer.write(datum, out);
}
private static class WriteBuilder extends AvroWithSparkSchemaVisitor> {
@Override
public ValueWriter> record(StructType struct, Schema record, List names, List> fields) {
List types = Stream.of(struct.fields()).map(StructField::dataType).collect(Collectors.toList());
return SparkValueWriters.struct(fields, types);
}
@Override
public ValueWriter> union(DataType type, Schema union, List> options) {
Preconditions.checkArgument(options.contains(ValueWriters.nulls()),
"Cannot create writer for non-option union: %s", union);
Preconditions.checkArgument(options.size() == 2,
"Cannot create writer for non-option union: %s", union);
if (union.getTypes().get(0).getType() == Schema.Type.NULL) {
return ValueWriters.option(0, options.get(1));
} else {
return ValueWriters.option(1, options.get(0));
}
}
@Override
public ValueWriter> array(ArrayType sArray, Schema array, ValueWriter> elementWriter) {
return SparkValueWriters.array(elementWriter, sArray.elementType());
}
@Override
public ValueWriter> map(MapType sMap, Schema map, ValueWriter> valueReader) {
return SparkValueWriters.map(SparkValueWriters.strings(), sMap.keyType(), valueReader, sMap.valueType());
}
@Override
public ValueWriter> map(MapType sMap, Schema map, ValueWriter> keyWriter, ValueWriter> valueWriter) {
return SparkValueWriters.arrayMap(keyWriter, sMap.keyType(), valueWriter, sMap.valueType());
}
@Override
public ValueWriter> primitive(DataType type, Schema primitive) {
LogicalType logicalType = primitive.getLogicalType();
if (logicalType != null) {
switch (logicalType.getName()) {
case "date":
// Spark uses the same representation
return ValueWriters.ints();
case "timestamp-micros":
// Spark uses the same representation
return ValueWriters.longs();
case "decimal":
LogicalTypes.Decimal decimal = (LogicalTypes.Decimal) logicalType;
return SparkValueWriters.decimal(decimal.getPrecision(), decimal.getScale());
case "uuid":
return ValueWriters.uuids();
default:
throw new IllegalArgumentException("Unsupported logical type: " + logicalType);
}
}
switch (primitive.getType()) {
case NULL:
return ValueWriters.nulls();
case BOOLEAN:
return ValueWriters.booleans();
case INT:
if (type instanceof ByteType) {
return ValueWriters.tinyints();
} else if (type instanceof ShortType) {
return ValueWriters.shorts();
}
return ValueWriters.ints();
case LONG:
return ValueWriters.longs();
case FLOAT:
return ValueWriters.floats();
case DOUBLE:
return ValueWriters.doubles();
case STRING:
return SparkValueWriters.strings();
case FIXED:
return ValueWriters.fixed(primitive.getFixedSize());
case BYTES:
return ValueWriters.bytes();
default:
throw new IllegalArgumentException("Unsupported type: " + primitive);
}
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy