org.apache.spark.sql.catalyst.optimizer.RewriteUpdate.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of iceberg-spark3-extensions Show documentation
Show all versions of iceberg-spark3-extensions Show documentation
A table format for huge analytic datasets
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.apache.spark.sql.catalyst.optimizer
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.catalyst.expressions.Alias
import org.apache.spark.sql.catalyst.expressions.EqualNullSafe
import org.apache.spark.sql.catalyst.expressions.Expression
import org.apache.spark.sql.catalyst.expressions.If
import org.apache.spark.sql.catalyst.expressions.Literal
import org.apache.spark.sql.catalyst.expressions.Not
import org.apache.spark.sql.catalyst.expressions.SubqueryExpression
import org.apache.spark.sql.catalyst.plans.logical.Assignment
import org.apache.spark.sql.catalyst.plans.logical.DynamicFileFilter
import org.apache.spark.sql.catalyst.plans.logical.Filter
import org.apache.spark.sql.catalyst.plans.logical.LogicalPlan
import org.apache.spark.sql.catalyst.plans.logical.Project
import org.apache.spark.sql.catalyst.plans.logical.ReplaceData
import org.apache.spark.sql.catalyst.plans.logical.Union
import org.apache.spark.sql.catalyst.plans.logical.UpdateTable
import org.apache.spark.sql.catalyst.rules.Rule
import org.apache.spark.sql.catalyst.utils.PlanUtils.isIcebergRelation
import org.apache.spark.sql.catalyst.utils.RewriteRowLevelOperationHelper
import org.apache.spark.sql.execution.datasources.v2.DataSourceV2Relation
import org.apache.spark.sql.execution.datasources.v2.ExtendedDataSourceV2Implicits
import org.apache.spark.sql.internal.SQLConf
import org.apache.spark.sql.types.BooleanType
case class RewriteUpdate(spark: SparkSession) extends Rule[LogicalPlan] with RewriteRowLevelOperationHelper {
import ExtendedDataSourceV2Implicits._
import RewriteRowLevelOperationHelper._
override def conf: SQLConf = SQLConf.get
// TODO: can we do any better for no-op updates? when conditions evaluate to false/true?
override def apply(plan: LogicalPlan): LogicalPlan = plan transform {
case UpdateTable(r: DataSourceV2Relation, assignments, Some(cond))
if isIcebergRelation(r) && SubqueryExpression.hasSubquery(cond) =>
val writeInfo = newWriteInfo(r.schema)
val mergeBuilder = r.table.asMergeable.newMergeBuilder("update", writeInfo)
// since we are processing matched and not matched rows using separate jobs
// there will be two scans but we want to execute the dynamic file filter only once
// so the first job uses DynamicFileFilter and the second one uses the underlying scan plan
// both jobs share the same SparkMergeScan instance to ensure they operate on same files
val matchingRowsPlanBuilder = scanRelation => Filter(cond, scanRelation)
val scanPlan = buildDynamicFilterScanPlan(spark, r, r.output, mergeBuilder, cond, matchingRowsPlanBuilder)
val underlyingScanPlan = scanPlan match {
case DynamicFileFilter(plan, _, _) => plan.clone()
case _ => scanPlan.clone()
}
// build a plan for records that match the cond and should be updated
val matchedRowsPlan = Filter(cond, scanPlan)
val updatedRowsPlan = buildUpdateProjection(r, matchedRowsPlan, assignments)
// build a plan for records that did not match the cond but had to be copied over
val remainingRowFilter = Not(EqualNullSafe(cond, Literal(true, BooleanType)))
val remainingRowsPlan = Filter(remainingRowFilter, Project(r.output, underlyingScanPlan))
// new state is a union of updated and copied over records
val updatePlan = Union(updatedRowsPlan, remainingRowsPlan)
val mergeWrite = mergeBuilder.asWriteBuilder.buildForBatch()
val writePlan = buildWritePlan(updatePlan, r.table)
ReplaceData(r, mergeWrite, writePlan)
case UpdateTable(r: DataSourceV2Relation, assignments, Some(cond)) if isIcebergRelation(r) =>
val writeInfo = newWriteInfo(r.schema)
val mergeBuilder = r.table.asMergeable.newMergeBuilder("update", writeInfo)
val matchingRowsPlanBuilder = scanRelation => Filter(cond, scanRelation)
val scanPlan = buildDynamicFilterScanPlan(spark, r, r.output, mergeBuilder, cond, matchingRowsPlanBuilder)
val updateProjection = buildUpdateProjection(r, scanPlan, assignments, cond)
val mergeWrite = mergeBuilder.asWriteBuilder.buildForBatch()
val writePlan = buildWritePlan(updateProjection, r.table)
ReplaceData(r, mergeWrite, writePlan)
}
private def buildUpdateProjection(
relation: DataSourceV2Relation,
scanPlan: LogicalPlan,
assignments: Seq[Assignment],
cond: Expression = Literal.TrueLiteral): LogicalPlan = {
// this method relies on the fact that the assignments have been aligned before
require(relation.output.size == assignments.size, "assignments must be aligned")
// Spark is going to execute the condition for each column but it seems we cannot avoid this
val assignedExprs = assignments.map(_.value)
val updatedExprs = assignedExprs.zip(relation.output).map { case (assignedExpr, attr) =>
// use semanticEquals to avoid unnecessary if expressions as we may run after operator optimization
if (attr.semanticEquals(assignedExpr)) {
attr
} else if (cond == Literal.TrueLiteral) {
createAlias(assignedExpr, attr.name)
} else {
val updatedExpr = If(cond, assignedExpr, attr)
createAlias(updatedExpr, attr.name)
}
}
Project(updatedExprs, scanPlan)
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy