org.apache.iceberg.spark.source.SparkTable Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of iceberg-spark3 Show documentation
Show all versions of iceberg-spark3 Show documentation
A table format for huge analytic datasets
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.apache.iceberg.spark.source;
import java.util.Map;
import java.util.Set;
import org.apache.iceberg.Schema;
import org.apache.iceberg.Table;
import org.apache.iceberg.TableProperties;
import org.apache.iceberg.exceptions.ValidationException;
import org.apache.iceberg.expressions.Expression;
import org.apache.iceberg.expressions.Expressions;
import org.apache.iceberg.relocated.com.google.common.collect.ImmutableMap;
import org.apache.iceberg.relocated.com.google.common.collect.ImmutableSet;
import org.apache.iceberg.relocated.com.google.common.collect.Sets;
import org.apache.iceberg.spark.Spark3Util;
import org.apache.iceberg.spark.SparkFilters;
import org.apache.iceberg.spark.SparkSchemaUtil;
import org.apache.iceberg.types.Types;
import org.apache.spark.sql.SparkSession;
import org.apache.spark.sql.connector.catalog.SupportsRead;
import org.apache.spark.sql.connector.catalog.SupportsWrite;
import org.apache.spark.sql.connector.catalog.TableCapability;
import org.apache.spark.sql.connector.expressions.Transform;
import org.apache.spark.sql.connector.iceberg.catalog.ExtendedSupportsDelete;
import org.apache.spark.sql.connector.iceberg.catalog.SupportsMerge;
import org.apache.spark.sql.connector.iceberg.write.MergeBuilder;
import org.apache.spark.sql.connector.read.ScanBuilder;
import org.apache.spark.sql.connector.write.LogicalWriteInfo;
import org.apache.spark.sql.connector.write.WriteBuilder;
import org.apache.spark.sql.sources.Filter;
import org.apache.spark.sql.types.StructType;
import org.apache.spark.sql.util.CaseInsensitiveStringMap;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import static org.apache.iceberg.TableProperties.DELETE_MODE;
import static org.apache.iceberg.TableProperties.DELETE_MODE_DEFAULT;
import static org.apache.iceberg.TableProperties.MERGE_MODE;
import static org.apache.iceberg.TableProperties.MERGE_MODE_DEFAULT;
import static org.apache.iceberg.TableProperties.UPDATE_MODE;
import static org.apache.iceberg.TableProperties.UPDATE_MODE_DEFAULT;
public class SparkTable implements org.apache.spark.sql.connector.catalog.Table,
SupportsRead, SupportsWrite, ExtendedSupportsDelete, SupportsMerge {
private static final Logger LOG = LoggerFactory.getLogger(SparkTable.class);
private static final Set RESERVED_PROPERTIES = Sets.newHashSet("provider", "format", "current-snapshot-id");
private static final Set CAPABILITIES = ImmutableSet.of(
TableCapability.BATCH_READ,
TableCapability.BATCH_WRITE,
TableCapability.STREAMING_WRITE,
TableCapability.OVERWRITE_BY_FILTER,
TableCapability.OVERWRITE_DYNAMIC);
private final Table icebergTable;
private final StructType requestedSchema;
private final boolean refreshEagerly;
private StructType lazyTableSchema = null;
private SparkSession lazySpark = null;
public SparkTable(Table icebergTable, boolean refreshEagerly) {
this(icebergTable, null, refreshEagerly);
}
public SparkTable(Table icebergTable, StructType requestedSchema, boolean refreshEagerly) {
this.icebergTable = icebergTable;
this.requestedSchema = requestedSchema;
this.refreshEagerly = refreshEagerly;
if (requestedSchema != null) {
// convert the requested schema to throw an exception if any requested fields are unknown
SparkSchemaUtil.convert(icebergTable.schema(), requestedSchema);
}
}
private SparkSession sparkSession() {
if (lazySpark == null) {
this.lazySpark = SparkSession.active();
}
return lazySpark;
}
public Table table() {
return icebergTable;
}
@Override
public String name() {
return icebergTable.toString();
}
@Override
public StructType schema() {
if (lazyTableSchema == null) {
if (requestedSchema != null) {
this.lazyTableSchema = SparkSchemaUtil.convert(SparkSchemaUtil.prune(icebergTable.schema(), requestedSchema));
} else {
this.lazyTableSchema = SparkSchemaUtil.convert(icebergTable.schema());
}
}
return lazyTableSchema;
}
@Override
public Transform[] partitioning() {
return Spark3Util.toTransforms(icebergTable.spec());
}
@Override
public Map properties() {
ImmutableMap.Builder propsBuilder = ImmutableMap.builder();
String fileFormat = icebergTable.properties()
.getOrDefault(TableProperties.DEFAULT_FILE_FORMAT, TableProperties.DEFAULT_FILE_FORMAT_DEFAULT);
propsBuilder.put("format", "iceberg/" + fileFormat);
propsBuilder.put("provider", "iceberg");
String currentSnapshotId = icebergTable.currentSnapshot() != null ?
String.valueOf(icebergTable.currentSnapshot().snapshotId()) : "none";
propsBuilder.put("current-snapshot-id", currentSnapshotId);
icebergTable.properties().entrySet().stream()
.filter(entry -> !RESERVED_PROPERTIES.contains(entry.getKey()))
.forEach(propsBuilder::put);
return propsBuilder.build();
}
@Override
public Set capabilities() {
return CAPABILITIES;
}
@Override
public ScanBuilder newScanBuilder(CaseInsensitiveStringMap options) {
if (refreshEagerly) {
icebergTable.refresh();
}
SparkScanBuilder scanBuilder = new SparkScanBuilder(sparkSession(), icebergTable, options);
if (requestedSchema != null) {
scanBuilder.pruneColumns(requestedSchema);
}
return scanBuilder;
}
@Override
public WriteBuilder newWriteBuilder(LogicalWriteInfo info) {
return new SparkWriteBuilder(sparkSession(), icebergTable, info);
}
@Override
public MergeBuilder newMergeBuilder(String operation, LogicalWriteInfo info) {
String mode = getRowLevelOperationMode(operation);
ValidationException.check(mode.equals("copy-on-write"), "Unsupported mode for %s: %s", operation, mode);
return new SparkMergeBuilder(sparkSession(), icebergTable, operation, info);
}
private String getRowLevelOperationMode(String operation) {
Map props = icebergTable.properties();
if (operation.equalsIgnoreCase("delete")) {
return props.getOrDefault(DELETE_MODE, DELETE_MODE_DEFAULT);
} else if (operation.equalsIgnoreCase("update")) {
return props.getOrDefault(UPDATE_MODE, UPDATE_MODE_DEFAULT);
} else if (operation.equalsIgnoreCase("merge")) {
return props.getOrDefault(MERGE_MODE, MERGE_MODE_DEFAULT);
} else {
throw new IllegalArgumentException("Unsupported operation: " + operation);
}
}
@Override
public boolean canDeleteWhere(Filter[] filters) {
if (table().specs().size() > 1) {
// cannot guarantee a metadata delete will be successful if we have multiple specs
return false;
}
Set identitySourceIds = table().spec().identitySourceIds();
Schema schema = table().schema();
for (Filter filter : filters) {
// return false if the filter requires rewrite or if we cannot translate the filter
if (requiresRewrite(filter, schema, identitySourceIds) || SparkFilters.convert(filter) == null) {
return false;
}
}
return true;
}
private boolean requiresRewrite(Filter filter, Schema schema, Set identitySourceIds) {
// TODO: handle dots correctly via v2references
// TODO: detect more cases that don't require rewrites
Set filterRefs = Sets.newHashSet(filter.references());
return filterRefs.stream().anyMatch(ref -> {
Types.NestedField field = schema.findField(ref);
ValidationException.check(field != null, "Cannot find field %s in schema", ref);
return !identitySourceIds.contains(field.fieldId());
});
}
@Override
public void deleteWhere(Filter[] filters) {
Expression deleteExpr = SparkFilters.convert(filters);
if (deleteExpr == Expressions.alwaysFalse()) {
LOG.info("Skipping the delete operation as the condition is always false");
return;
}
try {
icebergTable.newDelete()
.set("spark.app.id", sparkSession().sparkContext().applicationId())
.deleteFromRowFilter(deleteExpr)
.commit();
} catch (ValidationException e) {
throw new IllegalArgumentException("Failed to cleanly delete data files matching: " + deleteExpr, e);
}
}
@Override
public String toString() {
return icebergTable.toString();
}
@Override
public boolean equals(Object other) {
if (this == other) {
return true;
} else if (other == null || getClass() != other.getClass()) {
return false;
}
// use only name in order to correctly invalidate Spark cache
SparkTable that = (SparkTable) other;
return icebergTable.name().equals(that.icebergTable.name());
}
@Override
public int hashCode() {
// use only name in order to correctly invalidate Spark cache
return icebergTable.name().hashCode();
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy