org.apache.iceberg.spark.FileRewriteCoordinator Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of iceberg-spark3 Show documentation
Show all versions of iceberg-spark3 Show documentation
A table format for huge analytic datasets
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.apache.iceberg.spark;
import java.util.Map;
import java.util.Set;
import java.util.stream.Collectors;
import org.apache.iceberg.DataFile;
import org.apache.iceberg.HasTableOperations;
import org.apache.iceberg.Table;
import org.apache.iceberg.TableOperations;
import org.apache.iceberg.exceptions.ValidationException;
import org.apache.iceberg.relocated.com.google.common.collect.Maps;
import org.apache.iceberg.util.Pair;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
public class FileRewriteCoordinator {
private static final Logger LOG = LoggerFactory.getLogger(FileRewriteCoordinator.class);
private static final FileRewriteCoordinator INSTANCE = new FileRewriteCoordinator();
private final Map, Set> resultMap = Maps.newConcurrentMap();
private FileRewriteCoordinator() {
}
public static FileRewriteCoordinator get() {
return INSTANCE;
}
/**
* Called to persist the output of a rewrite action for a specific group. Since the write is done via a
* Spark Datasource, we have to propagate the result through this side-effect call.
* @param table table where the rewrite is occurring
* @param fileSetID the id used to identify the source set of files being rewritten
* @param newDataFiles the new files which have been written
*/
public void stageRewrite(Table table, String fileSetID, Set newDataFiles) {
LOG.debug("Staging the output for {} - fileset {} with {} files", table.name(), fileSetID, newDataFiles.size());
Pair id = toID(table, fileSetID);
resultMap.put(id, newDataFiles);
}
public Set fetchNewDataFiles(Table table, String fileSetID) {
Pair id = toID(table, fileSetID);
Set result = resultMap.get(id);
ValidationException.check(result != null,
"No results for rewrite of file set %s in table %s",
fileSetID, table);
return result;
}
public void clearRewrite(Table table, String fileSetID) {
LOG.debug("Removing entry from RewriteCoordinator for {} - id {}", table.name(), fileSetID);
Pair id = toID(table, fileSetID);
resultMap.remove(id);
}
public Set fetchSetIDs(Table table) {
return resultMap.keySet().stream()
.filter(e -> e.first().equals(tableUUID(table)))
.map(Pair::second)
.collect(Collectors.toSet());
}
private Pair toID(Table table, String setID) {
String tableUUID = tableUUID(table);
return Pair.of(tableUUID, setID);
}
private String tableUUID(Table table) {
TableOperations ops = ((HasTableOperations) table).operations();
return ops.current().uuid();
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy