org.apache.iceberg.spark.data.SparkAvroReader Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of iceberg-spark3 Show documentation
Show all versions of iceberg-spark3 Show documentation
A table format for huge analytic datasets
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.apache.iceberg.spark.data;
import java.io.IOException;
import java.util.List;
import java.util.Map;
import java.util.function.Supplier;
import org.apache.avro.LogicalType;
import org.apache.avro.LogicalTypes;
import org.apache.avro.Schema;
import org.apache.avro.io.DatumReader;
import org.apache.avro.io.Decoder;
import org.apache.iceberg.avro.AvroSchemaWithTypeVisitor;
import org.apache.iceberg.avro.SupportsRowPosition;
import org.apache.iceberg.avro.ValueReader;
import org.apache.iceberg.avro.ValueReaders;
import org.apache.iceberg.data.avro.DecoderResolver;
import org.apache.iceberg.relocated.com.google.common.collect.ImmutableMap;
import org.apache.iceberg.types.Type;
import org.apache.iceberg.types.Types;
import org.apache.spark.sql.catalyst.InternalRow;
public class SparkAvroReader implements DatumReader, SupportsRowPosition {
private final Schema readSchema;
private final ValueReader reader;
private Schema fileSchema = null;
public SparkAvroReader(org.apache.iceberg.Schema expectedSchema, Schema readSchema) {
this(expectedSchema, readSchema, ImmutableMap.of());
}
@SuppressWarnings("unchecked")
public SparkAvroReader(org.apache.iceberg.Schema expectedSchema, Schema readSchema, Map constants) {
this.readSchema = readSchema;
this.reader = (ValueReader) AvroSchemaWithTypeVisitor
.visit(expectedSchema, readSchema, new ReadBuilder(constants));
}
@Override
public void setSchema(Schema newFileSchema) {
this.fileSchema = Schema.applyAliases(newFileSchema, readSchema);
}
@Override
public InternalRow read(InternalRow reuse, Decoder decoder) throws IOException {
return DecoderResolver.resolveAndRead(decoder, readSchema, fileSchema, reader, reuse);
}
@Override
public void setRowPositionSupplier(Supplier posSupplier) {
if (reader instanceof SupportsRowPosition) {
((SupportsRowPosition) reader).setRowPositionSupplier(posSupplier);
}
}
private static class ReadBuilder extends AvroSchemaWithTypeVisitor> {
private final Map idToConstant;
private ReadBuilder(Map idToConstant) {
this.idToConstant = idToConstant;
}
@Override
public ValueReader> record(Types.StructType expected, Schema record, List names,
List> fields) {
return SparkValueReaders.struct(fields, expected, idToConstant);
}
@Override
public ValueReader> union(Type expected, Schema union, List> options) {
return ValueReaders.union(options);
}
@Override
public ValueReader> array(Types.ListType expected, Schema array, ValueReader> elementReader) {
return SparkValueReaders.array(elementReader);
}
@Override
public ValueReader> map(Types.MapType expected, Schema map,
ValueReader> keyReader, ValueReader> valueReader) {
return SparkValueReaders.arrayMap(keyReader, valueReader);
}
@Override
public ValueReader> map(Types.MapType expected, Schema map, ValueReader> valueReader) {
return SparkValueReaders.map(SparkValueReaders.strings(), valueReader);
}
@Override
public ValueReader> primitive(Type.PrimitiveType expected, Schema primitive) {
LogicalType logicalType = primitive.getLogicalType();
if (logicalType != null) {
switch (logicalType.getName()) {
case "date":
// Spark uses the same representation
return ValueReaders.ints();
case "timestamp-millis":
// adjust to microseconds
ValueReader longs = ValueReaders.longs();
return (ValueReader) (decoder, ignored) -> longs.read(decoder, null) * 1000L;
case "timestamp-micros":
// Spark uses the same representation
return ValueReaders.longs();
case "decimal":
return SparkValueReaders.decimal(
ValueReaders.decimalBytesReader(primitive),
((LogicalTypes.Decimal) logicalType).getScale());
case "uuid":
return SparkValueReaders.uuids();
default:
throw new IllegalArgumentException("Unknown logical type: " + logicalType);
}
}
switch (primitive.getType()) {
case NULL:
return ValueReaders.nulls();
case BOOLEAN:
return ValueReaders.booleans();
case INT:
return ValueReaders.ints();
case LONG:
return ValueReaders.longs();
case FLOAT:
return ValueReaders.floats();
case DOUBLE:
return ValueReaders.doubles();
case STRING:
return SparkValueReaders.strings();
case FIXED:
return ValueReaders.fixed(primitive.getFixedSize());
case BYTES:
return ValueReaders.bytes();
case ENUM:
return SparkValueReaders.enums(primitive.getEnumSymbols());
default:
throw new IllegalArgumentException("Unsupported type: " + primitive);
}
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy