All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.ignite.hadoop.mapreduce.IgniteHadoopWeightedMapReducePlanner Maven / Gradle / Ivy

Go to download

Java-based middleware for in-memory processing of big data in a distributed environment.

There is a newer version: 2.8.1
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.ignite.hadoop.mapreduce;

import org.apache.ignite.IgniteCheckedException;
import org.apache.ignite.IgniteException;
import org.apache.ignite.IgniteFileSystem;
import org.apache.ignite.cluster.ClusterNode;
import org.apache.ignite.hadoop.HadoopJob;
import org.apache.ignite.igfs.IgfsBlockLocation;
import org.apache.ignite.igfs.IgfsPath;
import org.apache.ignite.internal.IgniteEx;
import org.apache.ignite.internal.processors.hadoop.HadoopCommonUtils;
import org.apache.ignite.internal.processors.hadoop.HadoopFileBlock;
import org.apache.ignite.hadoop.HadoopInputSplit;
import org.apache.ignite.hadoop.HadoopMapReducePlan;
import org.apache.ignite.internal.processors.hadoop.igfs.HadoopIgfsEndpoint;
import org.apache.ignite.hadoop.planner.HadoopAbstractMapReducePlanner;
import org.apache.ignite.internal.processors.hadoop.planner.HadoopDefaultMapReducePlan;
import org.apache.ignite.internal.processors.hadoop.planner.HadoopMapReducePlanGroup;
import org.apache.ignite.internal.processors.hadoop.planner.HadoopMapReducePlanTopology;
import org.apache.ignite.internal.processors.igfs.IgfsEx;
import org.apache.ignite.internal.util.typedef.F;
import org.apache.ignite.internal.util.typedef.internal.S;
import org.jetbrains.annotations.Nullable;

import java.util.ArrayList;
import java.util.Collection;
import java.util.Comparator;
import java.util.HashMap;
import java.util.HashSet;
import java.util.IdentityHashMap;
import java.util.LinkedHashSet;
import java.util.List;
import java.util.Map;
import java.util.TreeMap;
import java.util.TreeSet;
import java.util.UUID;
import java.util.concurrent.ThreadLocalRandom;

/**
 * Map-reduce planner which assigns mappers and reducers based on their "weights". Weight describes how much resources
 * are required to execute particular map or reduce task.
 * 

* Plan creation consists of two steps: assigning mappers and assigning reducers. *

* Mappers are assigned based on input split data location. For each input split we search for nodes where * its data is stored. Planner tries to assign mappers to their affinity nodes first. This process is governed by two * properties: *

    *
  • {@code localMapperWeight} - weight of a map task when it is executed on an affinity node;
  • *
  • {@code remoteMapperWeight} - weight of a map task when it is executed on a non-affinity node.
  • *
* Planning algorithm assign mappers so that total resulting weight on all nodes is minimum possible. *

* Reducers are assigned differently. First we try to distribute reducers across nodes with mappers. This approach * could minimize expensive data transfer over network. Reducer assigned to a node with mapper is considered * {@code local}. Otherwise it is considered {@code remote}. This process continue until certain weight * threshold is reached what means that current node is already too busy and it should not have higher priority over * other nodes any more. Threshold can be configured using {@code preferLocalReducerThresholdWeight} property. *

* When local reducer threshold is reached on all nodes, we distribute remaining reducers based on their local and * remote weights in the same way as it is done for mappers. This process is governed by two * properties: *

    *
  • {@code localReducerWeight} - weight of a reduce task when it is executed on a node with mappers;
  • *
  • {@code remoteReducerWeight} - weight of a map task when it is executed on a node without mappers.
  • *
*/ public class IgniteHadoopWeightedMapReducePlanner extends HadoopAbstractMapReducePlanner { /** Default local mapper weight. */ public static final int DFLT_LOC_MAPPER_WEIGHT = 100; /** Default remote mapper weight. */ public static final int DFLT_RMT_MAPPER_WEIGHT = 100; /** Default local reducer weight. */ public static final int DFLT_LOC_REDUCER_WEIGHT = 100; /** Default remote reducer weight. */ public static final int DFLT_RMT_REDUCER_WEIGHT = 100; /** Default reducer migration threshold weight. */ public static final int DFLT_PREFER_LOCAL_REDUCER_THRESHOLD_WEIGHT = 200; /** Local mapper weight. */ private int locMapperWeight = DFLT_LOC_MAPPER_WEIGHT; /** Remote mapper weight. */ private int rmtMapperWeight = DFLT_RMT_MAPPER_WEIGHT; /** Local reducer weight. */ private int locReducerWeight = DFLT_LOC_REDUCER_WEIGHT; /** Remote reducer weight. */ private int rmtReducerWeight = DFLT_RMT_REDUCER_WEIGHT; /** Reducer migration threshold weight. */ private int preferLocReducerThresholdWeight = DFLT_PREFER_LOCAL_REDUCER_THRESHOLD_WEIGHT; /** {@inheritDoc} */ @Override public HadoopMapReducePlan preparePlan(HadoopJob job, Collection nodes, @Nullable HadoopMapReducePlan oldPlan) throws IgniteCheckedException { List splits = HadoopCommonUtils.sortInputSplits(job.input()); int reducerCnt = job.reducers(); if (reducerCnt < 0) throw new IgniteCheckedException("Number of reducers must be non-negative, actual: " + reducerCnt); HadoopMapReducePlanTopology top = topology(nodes); Mappers mappers = assignMappers(splits, top); Map reducers = assignReducers(splits, top, mappers, reducerCnt); return new HadoopDefaultMapReducePlan(mappers.nodeToSplits, reducers); } /** * Assign mappers to nodes. * * @param splits Input splits. * @param top Topology. * @return Mappers. * @throws IgniteCheckedException If failed. */ private Mappers assignMappers(Collection splits, HadoopMapReducePlanTopology top) throws IgniteCheckedException { Mappers res = new Mappers(); for (HadoopInputSplit split : splits) { // Try getting IGFS affinity. Collection nodeIds = affinityNodesForSplit(split, top); // Get best node. UUID node = bestMapperNode(nodeIds, top); assert node != null; res.add(split, node); } return res; } /** * Get affinity nodes for the given input split. *

* Order in the returned collection *is* significant, meaning that nodes containing more data * go first. This way, the 1st nodes in the collection considered to be preferable for scheduling. * * @param split Split. * @param top Topology. * @return Affintiy nodes. * @throws IgniteCheckedException If failed. */ private Collection affinityNodesForSplit(HadoopInputSplit split, HadoopMapReducePlanTopology top) throws IgniteCheckedException { Collection igfsNodeIds = igfsAffinityNodesForSplit(split); if (igfsNodeIds != null) return igfsNodeIds; Map res = new TreeMap<>(); for (String host : split.hosts()) { long len = split instanceof HadoopFileBlock ? ((HadoopFileBlock)split).length() : 0L; HadoopMapReducePlanGroup grp = top.groupForHost(host); if (grp != null) { for (int i = 0; i < grp.nodeCount(); i++) { UUID nodeId = grp.nodeId(i); res.put(new NodeIdAndLength(nodeId, len), nodeId); } } } return new LinkedHashSet<>(res.values()); } /** * Get IGFS affinity nodes for split if possible. *

* Order in the returned collection *is* significant, meaning that nodes containing more data * go first. This way, the 1st nodes in the collection considered to be preferable for scheduling. * * @param split Input split. * @return IGFS affinity or {@code null} if IGFS is not available. * @throws IgniteCheckedException If failed. */ @Nullable private Collection igfsAffinityNodesForSplit(HadoopInputSplit split) throws IgniteCheckedException { if (split instanceof HadoopFileBlock) { HadoopFileBlock split0 = (HadoopFileBlock)split; if (IgniteFileSystem.IGFS_SCHEME.equalsIgnoreCase(split0.file().getScheme())) { HadoopIgfsEndpoint endpoint = new HadoopIgfsEndpoint(split0.file().getAuthority()); IgfsEx igfs = (IgfsEx)((IgniteEx)ignite).igfsx(endpoint.igfs()); if (igfs != null && !igfs.isProxy(split0.file())) { IgfsPath path = new IgfsPath(split0.file()); if (igfs.exists(path)) { Collection blocks; try { blocks = igfs.affinity(path, split0.start(), split0.length()); } catch (IgniteException e) { throw new IgniteCheckedException("Failed to get IGFS file block affinity [path=" + path + ", start=" + split0.start() + ", len=" + split0.length() + ']', e); } assert blocks != null; if (blocks.size() == 1) return blocks.iterator().next().nodeIds(); else { // The most "local" nodes go first. Map idToLen = new HashMap<>(); for (IgfsBlockLocation block : blocks) { for (UUID id : block.nodeIds()) { Long len = idToLen.get(id); idToLen.put(id, len == null ? block.length() : block.length() + len); } } // Sort the nodes in non-ascending order by contained data lengths. Map res = new TreeMap<>(); for (Map.Entry idToLenEntry : idToLen.entrySet()) { UUID id = idToLenEntry.getKey(); res.put(new NodeIdAndLength(id, idToLenEntry.getValue()), id); } return new LinkedHashSet<>(res.values()); } } } } } return null; } /** * Find best mapper node. * * @param affIds Affinity node IDs. * @param top Topology. * @return Result. */ private UUID bestMapperNode(@Nullable Collection affIds, HadoopMapReducePlanTopology top) { // Priority node. UUID prioAffId = F.first(affIds); // Find group with the least weight. HadoopMapReducePlanGroup resGrp = null; MapperPriority resPrio = MapperPriority.NORMAL; int resWeight = Integer.MAX_VALUE; for (HadoopMapReducePlanGroup grp : top.groups()) { MapperPriority prio = groupPriority(grp, affIds, prioAffId); int weight = grp.weight() + (prio == MapperPriority.NORMAL ? rmtMapperWeight : locMapperWeight); if (resGrp == null || weight < resWeight || weight == resWeight && prio.value() > resPrio.value()) { resGrp = grp; resPrio = prio; resWeight = weight; } } assert resGrp != null; // Update group weight for further runs. resGrp.weight(resWeight); // Return the best node from the group. return bestMapperNodeForGroup(resGrp, resPrio, affIds, prioAffId); } /** * Get best node in the group. * * @param grp Group. * @param priority Priority. * @param affIds Affinity IDs. * @param prioAffId Priority affinity IDs. * @return Best node ID in the group. */ private static UUID bestMapperNodeForGroup(HadoopMapReducePlanGroup grp, MapperPriority priority, @Nullable Collection affIds, @Nullable UUID prioAffId) { // Return the best node from the group. int idx = 0; // This is rare situation when several nodes are started on the same host. if (!grp.single()) { switch (priority) { case NORMAL: { // Pick any node. idx = ThreadLocalRandom.current().nextInt(grp.nodeCount()); break; } case HIGH: { // Pick any affinity node. assert affIds != null; List cands = new ArrayList<>(); for (int i = 0; i < grp.nodeCount(); i++) { UUID id = grp.nodeId(i); if (affIds.contains(id)) cands.add(i); } idx = cands.get(ThreadLocalRandom.current().nextInt(cands.size())); break; } default: { // Find primary node. assert prioAffId != null; for (int i = 0; i < grp.nodeCount(); i++) { UUID id = grp.nodeId(i); if (F.eq(id, prioAffId)) { idx = i; break; } } assert priority == MapperPriority.HIGHEST; } } } return grp.nodeId(idx); } /** * Generate reducers. * * @param splits Input splits. * @param top Topology. * @param mappers Mappers. * @param reducerCnt Reducer count. * @return Reducers. */ private Map assignReducers(Collection splits, HadoopMapReducePlanTopology top, Mappers mappers, int reducerCnt) { Map reducers = assignReducers0(top, splits, mappers, reducerCnt); int cnt = 0; Map res = new HashMap<>(reducers.size()); for (Map.Entry reducerEntry : reducers.entrySet()) { int[] arr = new int[reducerEntry.getValue()]; for (int i = 0; i < arr.length; i++) arr[i] = cnt++; res.put(reducerEntry.getKey(), arr); } assert reducerCnt == cnt : reducerCnt + " != " + cnt; return res; } /** * Generate reducers. * * @param top Topology. * @param splits Input splits. * @param mappers Mappers. * @param reducerCnt Reducer count. * @return Reducers. */ private Map assignReducers0(HadoopMapReducePlanTopology top, Collection splits, Mappers mappers, int reducerCnt) { Map res = new HashMap<>(); // Assign reducers to splits. Map splitToReducerCnt = assignReducersToSplits(splits, reducerCnt); // Assign as much local reducers as possible. int remaining = 0; for (Map.Entry entry : splitToReducerCnt.entrySet()) { HadoopInputSplit split = entry.getKey(); int cnt = entry.getValue(); if (cnt > 0) { int assigned = assignLocalReducers(split, cnt, top, mappers, res); assert assigned <= cnt; remaining += cnt - assigned; } } // Assign the rest reducers. if (remaining > 0) assignRemoteReducers(remaining, top, mappers, res); return res; } /** * Assign local split reducers. * * @param split Split. * @param cnt Reducer count. * @param top Topology. * @param mappers Mappers. * @param resMap Reducers result map. * @return Number of locally assigned reducers. */ private int assignLocalReducers(HadoopInputSplit split, int cnt, HadoopMapReducePlanTopology top, Mappers mappers, Map resMap) { // Dereference node. UUID nodeId = mappers.splitToNode.get(split); assert nodeId != null; // Dereference group. HadoopMapReducePlanGroup grp = top.groupForId(nodeId); assert grp != null; // Assign more reducers to the node until threshold is reached. int res = 0; while (res < cnt && grp.weight() < preferLocReducerThresholdWeight) { res++; grp.weight(grp.weight() + locReducerWeight); } // Update result map. if (res > 0) { Integer reducerCnt = resMap.get(nodeId); resMap.put(nodeId, reducerCnt == null ? res : reducerCnt + res); } return res; } /** * Assign remote reducers. Assign to the least loaded first. * * @param cnt Count. * @param top Topology. * @param mappers Mappers. * @param resMap Reducers result map. */ private void assignRemoteReducers(int cnt, HadoopMapReducePlanTopology top, Mappers mappers, Map resMap) { TreeSet set = new TreeSet<>(new GroupWeightComparator()); set.addAll(top.groups()); while (cnt-- > 0) { // The least loaded machine. HadoopMapReducePlanGroup grp = set.first(); // Look for nodes with assigned splits. List splitNodeIds = null; for (int i = 0; i < grp.nodeCount(); i++) { UUID nodeId = grp.nodeId(i); if (mappers.nodeToSplits.containsKey(nodeId)) { if (splitNodeIds == null) splitNodeIds = new ArrayList<>(2); splitNodeIds.add(nodeId); } } // Select best node. UUID id; int newWeight; if (splitNodeIds != null) { id = splitNodeIds.get(ThreadLocalRandom.current().nextInt(splitNodeIds.size())); newWeight = grp.weight() + locReducerWeight; } else { id = grp.nodeId(ThreadLocalRandom.current().nextInt(grp.nodeCount())); newWeight = grp.weight() + rmtReducerWeight; } // Re-add entry with new weight. boolean rmv = set.remove(grp); assert rmv; grp.weight(newWeight); boolean add = set.add(grp); assert add; // Update result map. Integer res = resMap.get(id); resMap.put(id, res == null ? 1 : res + 1); } } /** * Comparator based on group's weight. */ private static class GroupWeightComparator implements Comparator { /** {@inheritDoc} */ @Override public int compare(HadoopMapReducePlanGroup first, HadoopMapReducePlanGroup second) { int res = first.weight() - second.weight(); if (res < 0) return -1; else if (res > 0) return 1; else return first.macs().compareTo(second.macs()); } } /** * Distribute reducers between splits. * * @param splits Splits. * @param reducerCnt Reducer count. * @return Map from input split to reducer count. */ private Map assignReducersToSplits(Collection splits, int reducerCnt) { Map res = new IdentityHashMap<>(splits.size()); int base = reducerCnt / splits.size(); int remainder = reducerCnt % splits.size(); for (HadoopInputSplit split : splits) { int val = base; if (remainder > 0) { val++; remainder--; } res.put(split, val); } assert remainder == 0; return res; } /** * Calculate group priority. * * @param grp Group. * @param affIds Affinity IDs. * @param prioAffId Priority affinity ID. * @return Group priority. */ private static MapperPriority groupPriority(HadoopMapReducePlanGroup grp, @Nullable Collection affIds, @Nullable UUID prioAffId) { assert F.isEmpty(affIds) ? prioAffId == null : prioAffId == F.first(affIds); assert grp != null; MapperPriority prio = MapperPriority.NORMAL; if (!F.isEmpty(affIds)) { for (int i = 0; i < grp.nodeCount(); i++) { UUID id = grp.nodeId(i); if (affIds.contains(id)) { prio = MapperPriority.HIGH; if (F.eq(prioAffId, id)) { prio = MapperPriority.HIGHEST; break; } } } } return prio; } /** * Get local mapper weight. This weight is added to a node when a mapper is assigned and it's input split data is * located on this node (at least partially). *

* Defaults to {@link #DFLT_LOC_MAPPER_WEIGHT}. * * @return Remote mapper weight. */ public int getLocalMapperWeight() { return locMapperWeight; } /** * Set local mapper weight. See {@link #getLocalMapperWeight()} for more information. * * @param locMapperWeight Local mapper weight. * @return {@code this} for chaining. */ public IgniteHadoopWeightedMapReducePlanner setLocalMapperWeight(int locMapperWeight) { this.locMapperWeight = locMapperWeight; return this; } /** * Get remote mapper weight. This weight is added to a node when a mapper is assigned, but it's input * split data is not located on this node. *

* Defaults to {@link #DFLT_RMT_MAPPER_WEIGHT}. * * @return Remote mapper weight. */ public int getRemoteMapperWeight() { return rmtMapperWeight; } /** * Set remote mapper weight. See {@link #getRemoteMapperWeight()} for more information. * * @param rmtMapperWeight Remote mapper weight. * @return {@code this} for chaining. */ public IgniteHadoopWeightedMapReducePlanner setRemoteMapperWeight(int rmtMapperWeight) { this.rmtMapperWeight = rmtMapperWeight; return this; } /** * Get local reducer weight. This weight is added to a node when a reducer is assigned and the node have at least * one assigned mapper. *

* Defaults to {@link #DFLT_LOC_REDUCER_WEIGHT}. * * @return Local reducer weight. */ public int getLocalReducerWeight() { return locReducerWeight; } /** * Set local reducer weight. See {@link #getLocalReducerWeight()} for more information. * * @param locReducerWeight Local reducer weight. * @return {@code this} for chaining. */ public IgniteHadoopWeightedMapReducePlanner setLocalReducerWeight(int locReducerWeight) { this.locReducerWeight = locReducerWeight; return this; } /** * Get remote reducer weight. This weight is added to a node when a reducer is assigned, but the node doesn't have * any assigned mappers. *

* Defaults to {@link #DFLT_RMT_REDUCER_WEIGHT}. * * @return Remote reducer weight. */ public int getRemoteReducerWeight() { return rmtReducerWeight; } /** * Set remote reducer weight. See {@link #getRemoteReducerWeight()} for more information. * * @param rmtReducerWeight Remote reducer weight. * @return {@code this} for chaining. */ public IgniteHadoopWeightedMapReducePlanner setRemoteReducerWeight(int rmtReducerWeight) { this.rmtReducerWeight = rmtReducerWeight; return this; } /** * Get reducer migration threshold weight. When threshold is reached, a node with mappers is no longer considered * as preferred for further reducer assignments. *

* Defaults to {@link #DFLT_PREFER_LOCAL_REDUCER_THRESHOLD_WEIGHT}. * * @return Reducer migration threshold weight. */ public int getPreferLocalReducerThresholdWeight() { return preferLocReducerThresholdWeight; } /** * Set reducer migration threshold weight. See {@link #getPreferLocalReducerThresholdWeight()} for more * information. * * @param reducerMigrationThresholdWeight Reducer migration threshold weight. * @return {@code this} for chaining. */ public IgniteHadoopWeightedMapReducePlanner setPreferLocalReducerThresholdWeight( int reducerMigrationThresholdWeight) { this.preferLocReducerThresholdWeight = reducerMigrationThresholdWeight; return this; } /** {@inheritDoc} */ @Override public String toString() { return S.toString(IgniteHadoopWeightedMapReducePlanner.class, this); } /** * Node ID and length. */ private static class NodeIdAndLength implements Comparable { /** Node ID. */ private final UUID id; /** Length. */ private final long len; /** * Constructor. * * @param id Node ID. * @param len Length. */ public NodeIdAndLength(UUID id, long len) { this.id = id; this.len = len; } /** {@inheritDoc} */ @SuppressWarnings("NullableProblems") @Override public int compareTo(NodeIdAndLength obj) { long res = len - obj.len; if (res > 0) return -1; else if (res < 0) return 1; else return id.compareTo(obj.id); } /** {@inheritDoc} */ @Override public int hashCode() { return id.hashCode(); } /** {@inheritDoc} */ @Override public boolean equals(Object obj) { return obj instanceof NodeIdAndLength && F.eq(id, ((NodeIdAndLength)obj).id); } } /** * Mappers. */ private static class Mappers { /** Node-to-splits map. */ private final Map> nodeToSplits = new HashMap<>(); /** Split-to-node map. */ private final Map splitToNode = new IdentityHashMap<>(); /** * Add mapping. * * @param split Split. * @param node Node. */ public void add(HadoopInputSplit split, UUID node) { Collection nodeSplits = nodeToSplits.get(node); if (nodeSplits == null) { nodeSplits = new HashSet<>(); nodeToSplits.put(node, nodeSplits); } nodeSplits.add(split); splitToNode.put(split, node); } } /** * Mapper priority enumeration. */ private enum MapperPriority { /** Normal node. */ NORMAL(0), /** (likely) Affinity node. */ HIGH(1), /** (likely) Affinity node with the highest priority (e.g. because it hosts more data than other nodes). */ HIGHEST(2); /** Value. */ private final int val; /** * Constructor. * * @param val Value. */ MapperPriority(int val) { this.val = val; } /** * @return Value. */ public int value() { return val; } } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy