org.apache.ignite.ml.genetic.parameter.GAConfiguration Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of ignite-ml Show documentation
Show all versions of ignite-ml Show documentation
Apache Ignite® is a Distributed Database For High-Performance Computing With In-Memory Speed.
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.ignite.ml.genetic.parameter;
import java.util.ArrayList;
import java.util.List;
import org.apache.ignite.ml.genetic.Gene;
import org.apache.ignite.ml.genetic.IFitnessFunction;
/**
* Maintains configuration parameters to be used in genetic algorithm
*
*
*
*
*
* NOTE: Default selectionMethod is SELECTION_METHOD_TRUNCATION
*
* Default truncateRate is .10
*
* More selectionMethods will be introduced in future releases.
*
*
*/
public class GAConfiguration {
/** Selection method */
private GAGridConstants.SELECTION_METHOD selectionMethod = null;
/** Criteria used to describe a chromosome */
private ChromosomeCriteria chromosomeCriteria = null;
/**
* Percentage of most fit chromosomes to be maintained and utilized to copy into new population.
*
* NOTE: This parameter is only considered when selectionMethod is SELECTION_METHOD_TRUNCATION
*
* Accepted values between 0 and 1
*/
private double truncateRate;
/**
* Elitism is the concept that the strongest members of the population will be preserved from generation to
* generation.
*
* No crossovers or mutations will be performed for elite chromosomes.
*
* NOTE: This parameter is only considered when selectionMethod is SELECTON_METHOD_ELETISM.
*/
private int elitismCount = 0;
/**
* Indicates how chromosome fitness values should be evaluated. A chromosome with
* isHigherFitnessValueFitter=true is considered fittest.
*/
private boolean isHigherFitnessValueFitter = true;
/**
* Population size represents the number of potential solutions (ie: chromosomes) between each generation Default
* size is 500
*
* NOTE: The population size remains fixed between each generation
*/
private int populationSize = 500;
/** Gene pool is the sum of ALL genes utilized to create chromsomes */
private List genePool = new ArrayList();
/** Number of genes within a chromosome */
private int chromosomeLength = 0;
/**
* Crossover rate is the probability that two chromosomes will breed with each other. offspring with traits of each
* of the parents.
*
* Accepted values are between 0 and 1
*/
private double crossOverRate = .50;
/**
* Mutation rate is the probability that a chromosome will be mutated offspring with traits of each of the parents.
*
*
* Accepted values are between 0 and 1
*/
private double mutationRate = .50;
/**
* Call back interface used to terminate Genetic algorithm.
*
* Implement this interface based on particular use case.
*/
private ITerminateCriteria terminateCriteria = null;
/**
* Represents a fitness function. Implement the IFitnessFunction to satisfy your particular use case.
*/
private IFitnessFunction fitnessFunction = null;
public GAConfiguration() {
this.setSelectionMethod(GAGridConstants.SELECTION_METHOD.SELECTION_METHOD_TRUNCATION);
this.setTruncateRate(.10);
}
/**
* retrieve the ChromosomeCriteria
*
* @return Chromosome criteria
*/
public ChromosomeCriteria getChromosomeCriteria() {
return chromosomeCriteria;
}
/**
* set value for ChromosomeCriteria
*
* @param chromosomeCriteria Chromosome criteria
*/
public void setChromosomeCriteria(ChromosomeCriteria chromosomeCriteria) {
this.chromosomeCriteria = chromosomeCriteria;
}
/**
* set Boolean value indicating how fitness values should be evaluated
*
* @param isHigherFitnessValueFitter Boolean value indicating how fitness values should be evaluated
*/
public void setIsHigherFitnessValueFitter(boolean isHigherFitnessValueFitter) {
this.isHigherFitnessValueFitter = isHigherFitnessValueFitter;
}
/**
* @return Boolean value indicating how fitness values should be evaluated.
*/
public boolean isHigherFitnessValueFitter() {
return this.isHigherFitnessValueFitter;
}
/**
* Retrieve the chromosome length
*
* @return Size of Chromosome
*/
public int getChromosomeLength() {
return chromosomeLength;
}
/**
* Set the Chromsome length
*
* @param chromosomeLength Size of Chromosome
*/
public void setChromosomeLength(int chromosomeLength) {
this.chromosomeLength = chromosomeLength;
}
/**
* Retrieve the cross over rate
*
* @return Cross over rate
*/
public double getCrossOverRate() {
return crossOverRate;
}
/**
* Set the cross over rate.
*
* @param crossOverRate Cross over rate
*/
public void setCrossOverRate(double crossOverRate) {
this.crossOverRate = crossOverRate;
}
/**
* Retrieve the elitism count
*
* @return Elitism count
*/
public int getElitismCount() {
return elitismCount;
}
/**
* Set the elitism count.
*
* @param elitismCount Elitism count
*/
public void setElitismCount(int elitismCount) {
this.elitismCount = elitismCount;
}
/**
* Retrieve IFitnessFunction
*
* @return Fitness function
*/
public IFitnessFunction getFitnessFunction() {
return fitnessFunction;
}
/**
* Set IFitnessFunction
*
* @param fitnessFunction Fitness function
*/
public void setFitnessFunction(IFitnessFunction fitnessFunction) {
this.fitnessFunction = fitnessFunction;
}
/**
* Retrieve the gene pool
*
* @return List of Genes
*/
public List getGenePool() {
return (this.genePool);
}
/**
* Set the gene pool.
*
* NOTE: When Apache Ignite is started the gene pool is utilized to initialize the distributed
* GAGridConstants.GENE_CACHE.
*
* @param genePool List of Genes
*/
public void setGenePool(List genePool) {
this.genePool = genePool;
}
/**
* Retrieve the mutation rate.
*
* @return Mutation Rate
*/
public double getMutationRate() {
return mutationRate;
}
/**
* Set the mutation rate.
*
* @param mutationRate Mutation Rate
*/
public void setMutationRate(double mutationRate) {
this.mutationRate = mutationRate;
}
/**
* Retrieve the population size
*
* @return Population size
*/
public int getPopulationSize() {
return populationSize;
}
/**
* Set the population size
*
* @param populationSize Size of population
*/
public void setPopulationSize(int populationSize) {
this.populationSize = populationSize;
}
/**
* Get the selection method
*
* @return Selection method
*/
public GAGridConstants.SELECTION_METHOD getSelectionMethod() {
return selectionMethod;
}
/**
* Set the selection method
*
* @param selectionMethod Selection method
*/
public void setSelectionMethod(GAGridConstants.SELECTION_METHOD selectionMethod) {
this.selectionMethod = selectionMethod;
}
/**
* Retreive the termination criteria
*
* @return Termination Criteria
*/
public ITerminateCriteria getTerminateCriteria() {
return terminateCriteria;
}
/**
* Set the termination criteria.
*
* @param terminateCriteria Termination Criteria
*/
public void setTerminateCriteria(ITerminateCriteria terminateCriteria) {
this.terminateCriteria = terminateCriteria;
}
/**
* Retrieve truncateRate
*
* @return Truncate Rate
*/
public double getTruncateRate() {
return truncateRate;
}
/**
* Set truncatePercentage
*
* @param truncateRate Truncate rate
*/
public void setTruncateRate(double truncateRate) {
this.truncateRate = truncateRate;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy