All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.ignite.ml.math.Precision Maven / Gradle / Ivy

Go to download

Apache Ignite® is a Distributed Database For High-Performance Computing With In-Memory Speed.

There is a newer version: 2.15.0
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.ignite.ml.math;

import java.math.BigDecimal;
import org.apache.ignite.ml.math.exceptions.MathArithmeticException;
import org.apache.ignite.ml.math.exceptions.MathIllegalArgumentException;

/**
 * This class is based on the corresponding class from Apache Common Math lib.
 * Utilities for comparing numbers. *
 */
public class Precision {
    /**
     * 

* Largest double-precision floating-point number such that * {@code 1 + EPSILON} is numerically equal to 1. This value is an upper * bound on the relative error due to rounding real numbers to double * precision floating-point numbers. *

*

* In IEEE 754 arithmetic, this is 2-53. *

* * @see Machine epsilon */ public static final double EPSILON; /** * Safe minimum, such that {@code 1 / SAFE_MIN} does not overflow. *
* In IEEE 754 arithmetic, this is also the smallest normalized * number 2-1022. */ public static final double SAFE_MIN; /** Exponent offset in IEEE754 representation. */ private static final long EXPONENT_OFFSET = 1023L; /** Offset to order signed double numbers lexicographically. */ private static final long SGN_MASK = 0x8000000000000000L; /** Offset to order signed double numbers lexicographically. */ private static final int SGN_MASK_FLOAT = 0x80000000; /** Positive zero. */ private static final double POSITIVE_ZERO = 0d; /** Positive zero bits. */ private static final long POSITIVE_ZERO_DOUBLE_BITS = Double.doubleToRawLongBits(+0.0); /** Negative zero bits. */ private static final long NEGATIVE_ZERO_DOUBLE_BITS = Double.doubleToRawLongBits(-0.0); /** Positive zero bits. */ private static final int POSITIVE_ZERO_FLOAT_BITS = Float.floatToRawIntBits(+0.0f); /** Negative zero bits. */ private static final int NEGATIVE_ZERO_FLOAT_BITS = Float.floatToRawIntBits(-0.0f); /** */ private static final String INVALID_ROUNDING_METHOD = "invalid rounding method {0}, " + "valid methods: {1} ({2}), {3} ({4}), {5} ({6}), {7} ({8}), {9} ({10}), {11} ({12}), {13} ({14}), {15} ({16})"; static { /* * This was previously expressed as = 0x1.0p-53; * However, OpenJDK (Sparc Solaris) cannot handle such small * constants: MATH-721 */ EPSILON = Double.longBitsToDouble((EXPONENT_OFFSET - 53L) << 52); /* * This was previously expressed as = 0x1.0p-1022; * However, OpenJDK (Sparc Solaris) cannot handle such small * constants: MATH-721 */ SAFE_MIN = Double.longBitsToDouble((EXPONENT_OFFSET - 1022L) << 52); } /** * Private constructor. */ private Precision() { } /** * Compares two numbers given some amount of allowed error. * * @param x the first number * @param y the second number * @param eps the amount of error to allow when checking for equality * @return
  • 0 if {@link #equals(double, double, double) equals(x, y, eps)}
  • < 0 if !{@link * #equals(double, double, double) equals(x, y, eps)} && x < y
  • > 0 if !{@link #equals(double, * double, double) equals(x, y, eps)} && x > y or either argument is NaN
*/ public static int compareTo(double x, double y, double eps) { if (equals(x, y, eps)) return 0; else if (x < y) return -1; return 1; } /** * Compares two numbers given some amount of allowed error. * Two float numbers are considered equal if there are {@code (maxUlps - 1)} * (or fewer) floating point numbers between them, i.e. two adjacent floating * point numbers are considered equal. * Adapted from * Bruce Dawson. Returns {@code false} if either of the arguments is NaN. * * @param x first value * @param y second value * @param maxUlps {@code (maxUlps - 1)} is the number of floating point values between {@code x} and {@code y}. * @return
  • 0 if {@link #equals(double, double, int) equals(x, y, maxUlps)}
  • < 0 if !{@link * #equals(double, double, int) equals(x, y, maxUlps)} && x < y
  • > 0 if !{@link * #equals(double, double, int) equals(x, y, maxUlps)} && x > y or either argument is NaN
*/ public static int compareTo(final double x, final double y, final int maxUlps) { if (equals(x, y, maxUlps)) return 0; else if (x < y) return -1; return 1; } /** * Returns true iff they are equal as defined by * {@link #equals(float, float, int) equals(x, y, 1)}. * * @param x first value * @param y second value * @return {@code true} if the values are equal. */ public static boolean equals(float x, float y) { return equals(x, y, 1); } /** * Returns true if both arguments are NaN or they are * equal as defined by {@link #equals(float, float) equals(x, y, 1)}. * * @param x first value * @param y second value * @return {@code true} if the values are equal or both are NaN. * @since 2.2 */ public static boolean equalsIncludingNaN(float x, float y) { return (x != x || y != y) ? !(x != x ^ y != y) : equals(x, y, 1); } /** * Returns true if the arguments are equal or within the range of allowed * error (inclusive). Returns {@code false} if either of the arguments * is NaN. * * @param x first value * @param y second value * @param eps the amount of absolute error to allow. * @return {@code true} if the values are equal or within range of each other. * @since 2.2 */ public static boolean equals(float x, float y, float eps) { return equals(x, y, 1) || Math.abs(y - x) <= eps; } /** * Returns true if the arguments are both NaN, are equal, or are within the range * of allowed error (inclusive). * * @param x first value * @param y second value * @param eps the amount of absolute error to allow. * @return {@code true} if the values are equal or within range of each other, or both are NaN. * @since 2.2 */ public static boolean equalsIncludingNaN(float x, float y, float eps) { return equalsIncludingNaN(x, y) || (Math.abs(y - x) <= eps); } /** * Returns true if the arguments are equal or within the range of allowed * error (inclusive). * Two float numbers are considered equal if there are {@code (maxUlps - 1)} * (or fewer) floating point numbers between them, i.e. two adjacent floating * point numbers are considered equal. * Adapted from * Bruce Dawson. Returns {@code false} if either of the arguments is NaN. * * @param x first value * @param y second value * @param maxUlps {@code (maxUlps - 1)} is the number of floating point values between {@code x} and {@code y}. * @return {@code true} if there are fewer than {@code maxUlps} floating point values between {@code x} and {@code * y}. * @since 2.2 */ public static boolean equals(final float x, final float y, final int maxUlps) { final int xInt = Float.floatToRawIntBits(x); final int yInt = Float.floatToRawIntBits(y); final boolean isEqual; if (((xInt ^ yInt) & SGN_MASK_FLOAT) == 0) { // number have same sign, there is no risk of overflow isEqual = Math.abs(xInt - yInt) <= maxUlps; } else { // number have opposite signs, take care of overflow final int deltaPlus; final int deltaMinus; if (xInt < yInt) { deltaPlus = yInt - POSITIVE_ZERO_FLOAT_BITS; deltaMinus = xInt - NEGATIVE_ZERO_FLOAT_BITS; } else { deltaPlus = xInt - POSITIVE_ZERO_FLOAT_BITS; deltaMinus = yInt - NEGATIVE_ZERO_FLOAT_BITS; } if (deltaPlus > maxUlps) isEqual = false; else isEqual = deltaMinus <= (maxUlps - deltaPlus); } return isEqual && !Float.isNaN(x) && !Float.isNaN(y); } /** * Returns true if the arguments are both NaN or if they are equal as defined * by {@link #equals(float, float, int) equals(x, y, maxUlps)}. * * @param x first value * @param y second value * @param maxUlps {@code (maxUlps - 1)} is the number of floating point values between {@code x} and {@code y}. * @return {@code true} if both arguments are NaN or if there are less than {@code maxUlps} floating point values * between {@code x} and {@code y}. * @since 2.2 */ public static boolean equalsIncludingNaN(float x, float y, int maxUlps) { return (x != x || y != y) ? !(x != x ^ y != y) : equals(x, y, maxUlps); } /** * Returns true iff they are equal as defined by * {@link #equals(double, double, int) equals(x, y, 1)}. * * @param x first value * @param y second value * @return {@code true} if the values are equal. */ public static boolean equals(double x, double y) { return equals(x, y, 1); } /** * Returns true if the arguments are both NaN or they are * equal as defined by {@link #equals(double, double) equals(x, y, 1)}. * * @param x first value * @param y second value * @return {@code true} if the values are equal or both are NaN. * @since 2.2 */ public static boolean equalsIncludingNaN(double x, double y) { return (x != x || y != y) ? !(x != x ^ y != y) : equals(x, y, 1); } /** * Returns {@code true} if there is no double value strictly between the * arguments or the difference between them is within the range of allowed * error (inclusive). Returns {@code false} if either of the arguments * is NaN. * * @param x First value. * @param y Second value. * @param eps Amount of allowed absolute error. * @return {@code true} if the values are two adjacent floating point numbers or they are within range of each * other. */ public static boolean equals(double x, double y, double eps) { return equals(x, y, 1) || Math.abs(y - x) <= eps; } /** * Returns {@code true} if there is no double value strictly between the * arguments or the relative difference between them is less than or equal * to the given tolerance. Returns {@code false} if either of the arguments * is NaN. * * @param x First value. * @param y Second value. * @param eps Amount of allowed relative error. * @return {@code true} if the values are two adjacent floating point numbers or they are within range of each * other. * @since 3.1 */ public static boolean equalsWithRelativeTolerance(double x, double y, double eps) { if (equals(x, y, 1)) return true; final double absMax = Math.max(Math.abs(x), Math.abs(y)); final double relativeDifference = Math.abs((x - y) / absMax); return relativeDifference <= eps; } /** * Returns true if the arguments are both NaN, are equal or are within the range * of allowed error (inclusive). * * @param x first value * @param y second value * @param eps the amount of absolute error to allow. * @return {@code true} if the values are equal or within range of each other, or both are NaN. * @since 2.2 */ public static boolean equalsIncludingNaN(double x, double y, double eps) { return equalsIncludingNaN(x, y) || (Math.abs(y - x) <= eps); } /** * Returns true if the arguments are equal or within the range of allowed * error (inclusive). *

* Two float numbers are considered equal if there are {@code (maxUlps - 1)} * (or fewer) floating point numbers between them, i.e. two adjacent * floating point numbers are considered equal. *

*

* Adapted from * Bruce Dawson. Returns {@code false} if either of the arguments is NaN. *

* * @param x first value * @param y second value * @param maxUlps {@code (maxUlps - 1)} is the number of floating point values between {@code x} and {@code y}. * @return {@code true} if there are fewer than {@code maxUlps} floating point values between {@code x} and {@code * y}. */ public static boolean equals(final double x, final double y, final int maxUlps) { final long xInt = Double.doubleToRawLongBits(x); final long yInt = Double.doubleToRawLongBits(y); final boolean isEqual; if (((xInt ^ yInt) & SGN_MASK) == 0L) { // number have same sign, there is no risk of overflow isEqual = Math.abs(xInt - yInt) <= maxUlps; } else { // number have opposite signs, take care of overflow final long deltaPlus; final long deltaMinus; if (xInt < yInt) { deltaPlus = yInt - POSITIVE_ZERO_DOUBLE_BITS; deltaMinus = xInt - NEGATIVE_ZERO_DOUBLE_BITS; } else { deltaPlus = xInt - POSITIVE_ZERO_DOUBLE_BITS; deltaMinus = yInt - NEGATIVE_ZERO_DOUBLE_BITS; } if (deltaPlus > maxUlps) isEqual = false; else isEqual = deltaMinus <= (maxUlps - deltaPlus); } return isEqual && !Double.isNaN(x) && !Double.isNaN(y); } /** * Returns true if both arguments are NaN or if they are equal as defined * by {@link #equals(double, double, int) equals(x, y, maxUlps)}. * * @param x first value * @param y second value * @param maxUlps {@code (maxUlps - 1)} is the number of floating point values between {@code x} and {@code y}. * @return {@code true} if both arguments are NaN or if there are less than {@code maxUlps} floating point values * between {@code x} and {@code y}. * @since 2.2 */ public static boolean equalsIncludingNaN(double x, double y, int maxUlps) { return (x != x || y != y) ? !(x != x ^ y != y) : equals(x, y, maxUlps); } /** * Rounds the given value to the specified number of decimal places. * The value is rounded using the {@link BigDecimal#ROUND_HALF_UP} method. * * @param x Value to round. * @param scale Number of digits to the right of the decimal point. * @return the rounded value. * @since 1.1 (previously in {@code MathUtils}, moved as of version 3.0) */ public static double round(double x, int scale) { return round(x, scale, BigDecimal.ROUND_HALF_UP); } /** * Rounds the given value to the specified number of decimal places. * The value is rounded using the given method which is any method defined * in {@link BigDecimal}. * If {@code x} is infinite or {@code NaN}, then the value of {@code x} is * returned unchanged, regardless of the other parameters. * * @param x Value to round. * @param scale Number of digits to the right of the decimal point. * @param roundingMtd Rounding method as defined in {@link BigDecimal}. * @return the rounded value. * @throws ArithmeticException if {@code roundingMethod == ROUND_UNNECESSARY} and the specified scaling operation * would require rounding. * @throws IllegalArgumentException if {@code roundingMethod} does not represent a valid rounding mode. * @since 1.1 (previously in {@code MathUtils}, moved as of version 3.0) */ public static double round(double x, int scale, int roundingMtd) { try { final double rounded = (new BigDecimal(Double.toString(x)) .setScale(scale, roundingMtd)) .doubleValue(); // MATH-1089: negative values rounded to zero should result in negative zero return rounded == POSITIVE_ZERO ? POSITIVE_ZERO * x : rounded; } catch (NumberFormatException ex) { if (Double.isInfinite(x)) return x; else return Double.NaN; } } /** * Rounds the given value to the specified number of decimal places. * The value is rounded using the {@link BigDecimal#ROUND_HALF_UP} method. * * @param x Value to round. * @param scale Number of digits to the right of the decimal point. * @return the rounded value. * @since 1.1 (previously in {@code MathUtils}, moved as of version 3.0) */ public static float round(float x, int scale) { return round(x, scale, BigDecimal.ROUND_HALF_UP); } /** * Rounds the given value to the specified number of decimal places. * The value is rounded using the given method which is any method defined * in {@link BigDecimal}. * * @param x Value to round. * @param scale Number of digits to the right of the decimal point. * @param roundingMtd Rounding method as defined in {@link BigDecimal}. * @return the rounded value. * @throws MathArithmeticException if an exact operation is required but result is not exact * @throws MathIllegalArgumentException if {@code roundingMethod} is not a valid rounding method. * @since 1.1 (previously in {@code MathUtils}, moved as of version 3.0) */ public static float round(float x, int scale, int roundingMtd) throws MathArithmeticException, MathIllegalArgumentException { final float sign = Math.copySign(1f, x); final float factor = (float)Math.pow(10.0f, scale) * sign; return (float)roundUnscaled(x * factor, sign, roundingMtd) / factor; } /** * Rounds the given non-negative value to the "nearest" integer. Nearest is * determined by the rounding method specified. Rounding methods are defined * in {@link BigDecimal}. * * @param unscaled Value to round. * @param sign Sign of the original, scaled value. * @param roundingMtd Rounding method, as defined in {@link BigDecimal}. * @return the rounded value. * @throws MathArithmeticException if an exact operation is required but result is not exact * @throws MathIllegalArgumentException if {@code roundingMethod} is not a valid rounding method. * @since 1.1 (previously in {@code MathUtils}, moved as of version 3.0) */ private static double roundUnscaled(double unscaled, double sign, int roundingMtd) throws MathArithmeticException, MathIllegalArgumentException { switch (roundingMtd) { case BigDecimal.ROUND_CEILING: if (sign == -1) unscaled = Math.floor(Math.nextAfter(unscaled, Double.NEGATIVE_INFINITY)); else unscaled = Math.ceil(Math.nextAfter(unscaled, Double.POSITIVE_INFINITY)); break; case BigDecimal.ROUND_DOWN: unscaled = Math.floor(Math.nextAfter(unscaled, Double.NEGATIVE_INFINITY)); break; case BigDecimal.ROUND_FLOOR: if (sign == -1) unscaled = Math.ceil(Math.nextAfter(unscaled, Double.POSITIVE_INFINITY)); else unscaled = Math.floor(Math.nextAfter(unscaled, Double.NEGATIVE_INFINITY)); break; case BigDecimal.ROUND_HALF_DOWN: { unscaled = Math.nextAfter(unscaled, Double.NEGATIVE_INFINITY); double fraction = unscaled - Math.floor(unscaled); if (fraction > 0.5) unscaled = Math.ceil(unscaled); else unscaled = Math.floor(unscaled); break; } case BigDecimal.ROUND_HALF_EVEN: { double fraction = unscaled - Math.floor(unscaled); if (fraction > 0.5) unscaled = Math.ceil(unscaled); else if (fraction < 0.5) unscaled = Math.floor(unscaled); else { // The following equality test is intentional and needed for rounding purposes if (Math.floor(unscaled) / 2.0 == Math.floor(Math.floor(unscaled) / 2.0)) { // even unscaled = Math.floor(unscaled); } else { // odd unscaled = Math.ceil(unscaled); } } break; } case BigDecimal.ROUND_HALF_UP: { unscaled = Math.nextAfter(unscaled, Double.POSITIVE_INFINITY); double fraction = unscaled - Math.floor(unscaled); if (fraction >= 0.5) unscaled = Math.ceil(unscaled); else unscaled = Math.floor(unscaled); break; } case BigDecimal.ROUND_UNNECESSARY: if (unscaled != Math.floor(unscaled)) throw new MathArithmeticException(); break; case BigDecimal.ROUND_UP: // do not round if the discarded fraction is equal to zero if (unscaled != Math.floor(unscaled)) unscaled = Math.ceil(Math.nextAfter(unscaled, Double.POSITIVE_INFINITY)); break; default: throw new MathIllegalArgumentException(INVALID_ROUNDING_METHOD, roundingMtd, "ROUND_CEILING", BigDecimal.ROUND_CEILING, "ROUND_DOWN", BigDecimal.ROUND_DOWN, "ROUND_FLOOR", BigDecimal.ROUND_FLOOR, "ROUND_HALF_DOWN", BigDecimal.ROUND_HALF_DOWN, "ROUND_HALF_EVEN", BigDecimal.ROUND_HALF_EVEN, "ROUND_HALF_UP", BigDecimal.ROUND_HALF_UP, "ROUND_UNNECESSARY", BigDecimal.ROUND_UNNECESSARY, "ROUND_UP", BigDecimal.ROUND_UP); } return unscaled; } /** * Computes a number {@code delta} close to {@code originalDelta} with * the property that

     *   x + delta - x
     * 
* is exactly machine-representable. * This is useful when computing numerical derivatives, in order to reduce * roundoff errors. * * @param x Value. * @param originalDelta Offset value. * @return a number {@code delta} so that {@code x + delta} and {@code x} differ by a representable floating number. */ public static double representableDelta(double x, double originalDelta) { return x + originalDelta - x; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy