org.apache.ignite.ml.math.decompositions.EigenDecomposition Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of ignite-ml Show documentation
Show all versions of ignite-ml Show documentation
Apache Ignite® is a Distributed Database For High-Performance Computing With In-Memory Speed.
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.ignite.ml.math.decompositions;
import org.apache.ignite.ml.math.Destroyable;
import org.apache.ignite.ml.math.Matrix;
import org.apache.ignite.ml.math.Vector;
import org.apache.ignite.ml.math.functions.Functions;
import static org.apache.ignite.ml.math.util.MatrixUtil.like;
import static org.apache.ignite.ml.math.util.MatrixUtil.likeVector;
/**
* This class provides EigenDecomposition of given matrix. The class is based on
* class with similar name from Apache Mahout library.
*
* @see MathWorld
*/
public class EigenDecomposition implements Destroyable {
/** Row and column dimension (square matrix). */
private final int n;
/** Array for internal storage of eigen vectors. */
private final Matrix v;
/** Array for internal storage of eigenvalues. */
private final Vector d;
/** Array for internal storage of eigenvalues. */
private final Vector e;
/**
* @param matrix Matrix to decompose.
*/
public EigenDecomposition(Matrix matrix) {
this(matrix, isSymmetric(matrix));
}
/**
* @param matrix Matrix to decompose.
* @param isSymmetric {@code true} if matrix passes symmetry check, {@code false otherwise}.
*/
public EigenDecomposition(Matrix matrix, boolean isSymmetric) {
n = matrix.columnSize();
d = likeVector(matrix);
e = likeVector(matrix);
v = like(matrix);
if (isSymmetric) {
v.assign(matrix);
// Tridiagonalize.
tred2();
// Diagonalize.
tql2();
}
else
// Reduce to Hessenberg form.
// Reduce Hessenberg to real Schur form.
hqr2(orthes(matrix));
}
/**
* Return the eigen vector matrix.
*
* @return V
*/
public Matrix getV() {
return like(v).assign(v);
}
/**
* Return the real parts of the eigenvalues
*/
public Vector getRealEigenValues() {
return d;
}
/**
* Return the imaginary parts of the eigenvalues.
*
* @return Vector of imaginary parts.
*/
public Vector getImagEigenvalues() {
return e;
}
/**
* Return the block diagonal eigenvalue matrix
*
* @return D
*/
public Matrix getD() {
Matrix res = like(v, d.size(), d.size());
res.assign(0);
res.viewDiagonal().assign(d);
for (int i = 0; i < n; i++) {
double v = e.getX(i);
if (v > 0)
res.setX(i, i + 1, v);
else if (v < 0)
res.setX(i, i - 1, v);
}
return res;
}
/**
* Destroys decomposition components and other internal components of decomposition.
*/
@Override public void destroy() {
e.destroy();
v.destroy();
d.destroy();
}
/** */
private void tred2() {
// This is derived from the Algol procedures tred2 by
// Bowdler, Martin, Reinsch, and Wilkinson, Handbook for
// Auto. Comp., Vol.ii-Linear Algebra, and the corresponding
// Fortran subroutine in EISPACK.
d.assign(v.viewColumn(n - 1));
// Householder reduction to tridiagonal form.
for (int i = n - 1; i > 0; i--) {
// Scale to avoid under/overflow.
double scale = d.viewPart(0, i).kNorm(1);
double h = 0.0;
if (scale == 0.0) {
e.setX(i, d.getX(i - 1));
for (int j = 0; j < i; j++) {
d.setX(j, v.getX(i - 1, j));
v.setX(i, j, 0.0);
v.setX(j, i, 0.0);
}
}
else {
// Generate Householder vector.
for (int k = 0; k < i; k++) {
d.setX(k, d.getX(k) / scale);
h += d.getX(k) * d.getX(k);
}
double f = d.getX(i - 1);
double g = Math.sqrt(h);
if (f > 0)
g = -g;
e.setX(i, scale * g);
h -= f * g;
d.setX(i - 1, f - g);
for (int j = 0; j < i; j++)
e.setX(j, 0.0);
// Apply similarity transformation to remaining columns.
for (int j = 0; j < i; j++) {
f = d.getX(j);
v.setX(j, i, f);
g = e.getX(j) + v.getX(j, j) * f;
for (int k = j + 1; k <= i - 1; k++) {
g += v.getX(k, j) * d.getX(k);
e.setX(k, e.getX(k) + v.getX(k, j) * f);
}
e.setX(j, g);
}
f = 0.0;
for (int j = 0; j < i; j++) {
e.setX(j, e.getX(j) / h);
f += e.getX(j) * d.getX(j);
}
double hh = f / (h + h);
for (int j = 0; j < i; j++)
e.setX(j, e.getX(j) - hh * d.getX(j));
for (int j = 0; j < i; j++) {
f = d.getX(j);
g = e.getX(j);
for (int k = j; k <= i - 1; k++)
v.setX(k, j, v.getX(k, j) - (f * e.getX(k) + g * d.getX(k)));
d.setX(j, v.getX(i - 1, j));
v.setX(i, j, 0.0);
}
}
d.setX(i, h);
}
}
/** */
private Matrix orthes(Matrix matrix) {
// Working storage for nonsymmetric algorithm.
Vector ort = likeVector(matrix);
Matrix hessenBerg = like(matrix).assign(matrix);
// This is derived from the Algol procedures orthes and ortran,
// by Martin and Wilkinson, Handbook for Auto. Comp.,
// Vol.ii-Linear Algebra, and the corresponding
// Fortran subroutines in EISPACK.
int low = 0;
int high = n - 1;
for (int m = low + 1; m <= high - 1; m++) {
// Scale column.
Vector hCol = hessenBerg.viewColumn(m - 1).viewPart(m, high - m + 1);
double scale = hCol.kNorm(1);
if (scale != 0.0) {
// Compute Householder transformation.
ort.viewPart(m, high - m + 1).map(hCol, Functions.plusMult(1 / scale));
double h = ort.viewPart(m, high - m + 1).getLengthSquared();
double g = Math.sqrt(h);
if (ort.getX(m) > 0)
g = -g;
h -= ort.getX(m) * g;
ort.setX(m, ort.getX(m) - g);
// Apply Householder similarity transformation
// H = (I-u*u'/h)*H*(I-u*u')/h)
Vector ortPiece = ort.viewPart(m, high - m + 1);
for (int j = m; j < n; j++) {
double f = ortPiece.dot(hessenBerg.viewColumn(j).viewPart(m, high - m + 1)) / h;
hessenBerg.viewColumn(j).viewPart(m, high - m + 1).map(ortPiece, Functions.plusMult(-f));
}
for (int i = 0; i <= high; i++) {
double f = ortPiece.dot(hessenBerg.viewRow(i).viewPart(m, high - m + 1)) / h;
hessenBerg.viewRow(i).viewPart(m, high - m + 1).map(ortPiece, Functions.plusMult(-f));
}
ort.setX(m, scale * ort.getX(m));
hessenBerg.setX(m, m - 1, scale * g);
}
}
// Accumulate transformations (Algol's ortran).
v.assign(0);
v.viewDiagonal().assign(1);
for (int m = high - 1; m >= low + 1; m--) {
if (hessenBerg.getX(m, m - 1) != 0.0) {
ort.viewPart(m + 1, high - m).assign(hessenBerg.viewColumn(m - 1).viewPart(m + 1, high - m));
for (int j = m; j <= high; j++) {
double g = ort.viewPart(m, high - m + 1).dot(v.viewColumn(j).viewPart(m, high - m + 1));
// Double division avoids possible underflow
g = g / ort.getX(m) / hessenBerg.getX(m, m - 1);
v.viewColumn(j).viewPart(m, high - m + 1).map(ort.viewPart(m, high - m + 1), Functions.plusMult(g));
}
}
}
return hessenBerg;
}
/**
* Symmetric tridiagonal QL algorithm.
*/
private void tql2() {
// This is derived from the Algol procedures tql2, by
// Bowdler, Martin, Reinsch, and Wilkinson, Handbook for
// Auto. Comp., Vol.ii-Linear Algebra, and the corresponding
// Fortran subroutine in EISPACK.
e.viewPart(0, n - 1).assign(e.viewPart(1, n - 1));
e.setX(n - 1, 0.0);
double f = 0.0;
double tst1 = 0.0;
double eps = Math.pow(2.0, -52.0);
for (int l = 0; l < n; l++) {
// Find small subdiagonal element.
tst1 = Math.max(tst1, Math.abs(d.getX(l)) + Math.abs(e.getX(l)));
int m = l;
while (m < n) {
if (Math.abs(e.getX(m)) <= eps * tst1)
break;
m++;
}
// If m == l, d.getX(l) is an eigenvalue,
// otherwise, iterate.
if (m > l) {
do {
// Compute implicit shift
double g = d.getX(l);
double p = (d.getX(l + 1) - g) / (2.0 * e.getX(l));
double r = Math.hypot(p, 1.0);
if (p < 0)
r = -r;
d.setX(l, e.getX(l) / (p + r));
d.setX(l + 1, e.getX(l) * (p + r));
double dl1 = d.getX(l + 1);
double h = g - d.getX(l);
for (int i = l + 2; i < n; i++)
d.setX(i, d.getX(i) - h);
f += h;
// Implicit QL transformation.
p = d.getX(m);
double c = 1.0;
double c2 = c;
double c3 = c;
double el1 = e.getX(l + 1);
double s = 0.0;
double s2 = 0.0;
for (int i = m - 1; i >= l; i--) {
c3 = c2;
c2 = c;
s2 = s;
g = c * e.getX(i);
h = c * p;
r = Math.hypot(p, e.getX(i));
e.setX(i + 1, s * r);
s = e.getX(i) / r;
c = p / r;
p = c * d.getX(i) - s * g;
d.setX(i + 1, h + s * (c * g + s * d.getX(i)));
// Accumulate transformation.
for (int k = 0; k < n; k++) {
h = v.getX(k, i + 1);
v.setX(k, i + 1, s * v.getX(k, i) + c * h);
v.setX(k, i, c * v.getX(k, i) - s * h);
}
}
p = -s * s2 * c3 * el1 * e.getX(l) / dl1;
e.setX(l, s * p);
d.setX(l, c * p);
// Check for convergence.
}
while (Math.abs(e.getX(l)) > eps * tst1);
}
d.setX(l, d.getX(l) + f);
e.setX(l, 0.0);
}
// Sort eigenvalues and corresponding vectors.
for (int i = 0; i < n - 1; i++) {
int k = i;
double p = d.getX(i);
for (int j = i + 1; j < n; j++)
if (d.getX(j) > p) {
k = j;
p = d.getX(j);
}
if (k != i) {
d.setX(k, d.getX(i));
d.setX(i, p);
for (int j = 0; j < n; j++) {
p = v.getX(j, i);
v.setX(j, i, v.getX(j, k));
v.setX(j, k, p);
}
}
}
}
/** */
private void hqr2(Matrix h) {
// This is derived from the Algol procedure hqr2,
// by Martin and Wilkinson, Handbook for Auto. Comp.,
// Vol.ii-Linear Algebra, and the corresponding
// Fortran subroutine in EISPACK.
// Initialize
int nn = this.n;
int n = nn - 1;
int low = 0;
int high = nn - 1;
double eps = Math.pow(2.0, -52.0);
double exshift = 0.0;
double p = 0;
double q = 0;
double r = 0;
double s = 0;
double z = 0;
double w;
double x;
double y;
// Store roots isolated by balanc and compute matrix norm
double norm = h.foldMap(Functions.PLUS, Functions.ABS, 0.0d);
// Outer loop over eigenvalue index
int iter = 0;
while (n >= low) {
// Look for single small sub-diagonal element
int l = n;
while (l > low) {
s = Math.abs(h.getX(l - 1, l - 1)) + Math.abs(h.getX(l, l));
if (s == 0.0)
s = norm;
if (Math.abs(h.getX(l, l - 1)) < eps * s)
break;
l--;
}
// Check for convergence
if (l == n) {
// One root found
h.setX(n, n, h.getX(n, n) + exshift);
d.setX(n, h.getX(n, n));
e.setX(n, 0.0);
n--;
iter = 0;
}
else if (l == n - 1) {
// Two roots found
w = h.getX(n, n - 1) * h.getX(n - 1, n);
p = (h.getX(n - 1, n - 1) - h.getX(n, n)) / 2.0;
q = p * p + w;
z = Math.sqrt(Math.abs(q));
h.setX(n, n, h.getX(n, n) + exshift);
h.setX(n - 1, n - 1, h.getX(n - 1, n - 1) + exshift);
x = h.getX(n, n);
// Real pair
if (q >= 0) {
if (p >= 0)
z = p + z;
else
z = p - z;
d.setX(n - 1, x + z);
d.setX(n, d.getX(n - 1));
if (z != 0.0)
d.setX(n, x - w / z);
e.setX(n - 1, 0.0);
e.setX(n, 0.0);
x = h.getX(n, n - 1);
s = Math.abs(x) + Math.abs(z);
p = x / s;
q = z / s;
r = Math.sqrt(p * p + q * q);
p /= r;
q /= r;
// Row modification
for (int j = n - 1; j < nn; j++) {
z = h.getX(n - 1, j);
h.setX(n - 1, j, q * z + p * h.getX(n, j));
h.setX(n, j, q * h.getX(n, j) - p * z);
}
// Column modification
for (int i = 0; i <= n; i++) {
z = h.getX(i, n - 1);
h.setX(i, n - 1, q * z + p * h.getX(i, n));
h.setX(i, n, q * h.getX(i, n) - p * z);
}
// Accumulate transformations
for (int i = low; i <= high; i++) {
z = v.getX(i, n - 1);
v.setX(i, n - 1, q * z + p * v.getX(i, n));
v.setX(i, n, q * v.getX(i, n) - p * z);
}
// Complex pair
}
else {
d.setX(n - 1, x + p);
d.setX(n, x + p);
e.setX(n - 1, z);
e.setX(n, -z);
}
n -= 2;
iter = 0;
// No convergence yet
}
else {
// Form shift
x = h.getX(n, n);
y = 0.0;
w = 0.0;
if (l < n) {
y = h.getX(n - 1, n - 1);
w = h.getX(n, n - 1) * h.getX(n - 1, n);
}
// Wilkinson's original ad hoc shift
if (iter == 10) {
exshift += x;
for (int i = low; i <= n; i++)
h.setX(i, i, x);
s = Math.abs(h.getX(n, n - 1)) + Math.abs(h.getX(n - 1, n - 2));
x = y = 0.75 * s;
w = -0.4375 * s * s;
}
// MATLAB's new ad hoc shift
if (iter == 30) {
s = (y - x) / 2.0;
s = s * s + w;
if (s > 0) {
s = Math.sqrt(s);
if (y < x)
s = -s;
s = x - w / ((y - x) / 2.0 + s);
for (int i = low; i <= n; i++)
h.setX(i, i, h.getX(i, i) - s);
exshift += s;
x = y = w = 0.964;
}
}
iter++; // (Could check iteration count here.)
// Look for two consecutive small sub-diagonal elements
int m = n - 2;
while (m >= l) {
z = h.getX(m, m);
r = x - z;
s = y - z;
p = (r * s - w) / h.getX(m + 1, m) + h.getX(m, m + 1);
q = h.getX(m + 1, m + 1) - z - r - s;
r = h.getX(m + 2, m + 1);
s = Math.abs(p) + Math.abs(q) + Math.abs(r);
p /= s;
q /= s;
r /= s;
if (m == l)
break;
double hmag = Math.abs(h.getX(m - 1, m - 1)) + Math.abs(h.getX(m + 1, m + 1));
double threshold = eps * Math.abs(p) * (Math.abs(z) + hmag);
if (Math.abs(h.getX(m, m - 1)) * (Math.abs(q) + Math.abs(r)) < threshold)
break;
m--;
}
for (int i = m + 2; i <= n; i++) {
h.setX(i, i - 2, 0.0);
if (i > m + 2)
h.setX(i, i - 3, 0.0);
}
// Double QR step involving rows l:n and columns m:n
for (int k = m; k <= n - 1; k++) {
boolean notlast = k != n - 1;
if (k != m) {
p = h.getX(k, k - 1);
q = h.getX(k + 1, k - 1);
r = notlast ? h.getX(k + 2, k - 1) : 0.0;
x = Math.abs(p) + Math.abs(q) + Math.abs(r);
if (x != 0.0) {
p /= x;
q /= x;
r /= x;
}
}
if (x == 0.0)
break;
s = Math.sqrt(p * p + q * q + r * r);
if (p < 0)
s = -s;
if (s != 0) {
if (k != m)
h.setX(k, k - 1, -s * x);
else if (l != m)
h.setX(k, k - 1, -h.getX(k, k - 1));
p += s;
x = p / s;
y = q / s;
z = r / s;
q /= p;
r /= p;
// Row modification
for (int j = k; j < nn; j++) {
p = h.getX(k, j) + q * h.getX(k + 1, j);
if (notlast) {
p += r * h.getX(k + 2, j);
h.setX(k + 2, j, h.getX(k + 2, j) - p * z);
}
h.setX(k, j, h.getX(k, j) - p * x);
h.setX(k + 1, j, h.getX(k + 1, j) - p * y);
}
// Column modification
for (int i = 0; i <= Math.min(n, k + 3); i++) {
p = x * h.getX(i, k) + y * h.getX(i, k + 1);
if (notlast) {
p += z * h.getX(i, k + 2);
h.setX(i, k + 2, h.getX(i, k + 2) - p * r);
}
h.setX(i, k, h.getX(i, k) - p);
h.setX(i, k + 1, h.getX(i, k + 1) - p * q);
}
// Accumulate transformations
for (int i = low; i <= high; i++) {
p = x * v.getX(i, k) + y * v.getX(i, k + 1);
if (notlast) {
p += z * v.getX(i, k + 2);
v.setX(i, k + 2, v.getX(i, k + 2) - p * r);
}
v.setX(i, k, v.getX(i, k) - p);
v.setX(i, k + 1, v.getX(i, k + 1) - p * q);
}
} // (s != 0)
} // k loop
} // check convergence
} // while (n >= low)
// Back substitute to find vectors of upper triangular form
if (norm == 0.0)
return;
for (n = nn - 1; n >= 0; n--) {
p = d.getX(n);
q = e.getX(n);
// Real vector
double t;
if (q == 0) {
int l = n;
h.setX(n, n, 1.0);
for (int i = n - 1; i >= 0; i--) {
w = h.getX(i, i) - p;
r = 0.0;
for (int j = l; j <= n; j++)
r += h.getX(i, j) * h.getX(j, n);
if (e.getX(i) < 0.0) {
z = w;
s = r;
}
else {
l = i;
if (e.getX(i) == 0.0) {
if (w == 0.0)
h.setX(i, n, -r / (eps * norm));
else
h.setX(i, n, -r / w);
// Solve real equations
}
else {
x = h.getX(i, i + 1);
y = h.getX(i + 1, i);
q = (d.getX(i) - p) * (d.getX(i) - p) + e.getX(i) * e.getX(i);
t = (x * s - z * r) / q;
h.setX(i, n, t);
if (Math.abs(x) > Math.abs(z))
h.setX(i + 1, n, (-r - w * t) / x);
else
h.setX(i + 1, n, (-s - y * t) / z);
}
// Overflow control
t = Math.abs(h.getX(i, n));
if (eps * t * t > 1) {
for (int j = i; j <= n; j++)
h.setX(j, n, h.getX(j, n) / t);
}
}
}
// Complex vector
}
else if (q < 0) {
int l = n - 1;
// Last vector component imaginary so matrix is triangular
if (Math.abs(h.getX(n, n - 1)) > Math.abs(h.getX(n - 1, n))) {
h.setX(n - 1, n - 1, q / h.getX(n, n - 1));
h.setX(n - 1, n, -(h.getX(n, n) - p) / h.getX(n, n - 1));
}
else {
cdiv(0.0, -h.getX(n - 1, n), h.getX(n - 1, n - 1) - p, q);
h.setX(n - 1, n - 1, cdivr);
h.setX(n - 1, n, cdivi);
}
h.setX(n, n - 1, 0.0);
h.setX(n, n, 1.0);
for (int i = n - 2; i >= 0; i--) {
double ra = 0.0;
double sa = 0.0;
for (int j = l; j <= n; j++) {
ra += h.getX(i, j) * h.getX(j, n - 1);
sa += h.getX(i, j) * h.getX(j, n);
}
w = h.getX(i, i) - p;
if (e.getX(i) < 0.0) {
z = w;
r = ra;
s = sa;
}
else {
l = i;
if (e.getX(i) == 0) {
cdiv(-ra, -sa, w, q);
h.setX(i, n - 1, cdivr);
h.setX(i, n, cdivi);
}
else {
// Solve complex equations
x = h.getX(i, i + 1);
y = h.getX(i + 1, i);
double vr = (d.getX(i) - p) * (d.getX(i) - p) + e.getX(i) * e.getX(i) - q * q;
double vi = (d.getX(i) - p) * 2.0 * q;
if (vr == 0.0 && vi == 0.0) {
double hmag = Math.abs(x) + Math.abs(y);
vr = eps * norm * (Math.abs(w) + Math.abs(q) + hmag + Math.abs(z));
}
cdiv(x * r - z * ra + q * sa, x * s - z * sa - q * ra, vr, vi);
h.setX(i, n - 1, cdivr);
h.setX(i, n, cdivi);
if (Math.abs(x) > (Math.abs(z) + Math.abs(q))) {
h.setX(i + 1, n - 1, (-ra - w * h.getX(i, n - 1) + q * h.getX(i, n)) / x);
h.setX(i + 1, n, (-sa - w * h.getX(i, n) - q * h.getX(i, n - 1)) / x);
}
else {
cdiv(-r - y * h.getX(i, n - 1), -s - y * h.getX(i, n), z, q);
h.setX(i + 1, n - 1, cdivr);
h.setX(i + 1, n, cdivi);
}
}
// Overflow control
t = Math.max(Math.abs(h.getX(i, n - 1)), Math.abs(h.getX(i, n)));
if (eps * t * t > 1)
for (int j = i; j <= n; j++) {
h.setX(j, n - 1, h.getX(j, n - 1) / t);
h.setX(j, n, h.getX(j, n) / t);
}
}
}
}
}
// Vectors of isolated roots
for (int i = 0; i < nn; i++)
if (i < low || i > high) {
for (int j = i; j < nn; j++)
v.setX(i, j, h.getX(i, j));
}
// Back transformation to get eigen vectors of original matrix
for (int j = nn - 1; j >= low; j--)
for (int i = low; i <= high; i++) {
z = 0.0;
for (int k = low; k <= Math.min(j, high); k++)
z += v.getX(i, k) * h.getX(k, j);
v.setX(i, j, z);
}
}
/** */
private static boolean isSymmetric(Matrix matrix) {
int cols = matrix.columnSize();
int rows = matrix.rowSize();
if (cols != rows)
return false;
for (int i = 0; i < cols; i++)
for (int j = 0; j < rows; j++) {
if (matrix.getX(i, j) != matrix.get(j, i))
return false;
}
return true;
}
/** Complex scalar division - real part. */
private double cdivr;
/** Complex scalar division - imaginary part. */
private double cdivi;
/** */
private void cdiv(double xr, double xi, double yr, double yi) {
double r;
double d;
if (Math.abs(yr) > Math.abs(yi)) {
r = yi / yr;
d = yr + r * yi;
cdivr = (xr + r * xi) / d;
cdivi = (xi - r * xr) / d;
}
else {
r = yr / yi;
d = yi + r * yr;
cdivr = (r * xr + xi) / d;
cdivi = (r * xi - xr) / d;
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy