All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.ignite.ml.math.decompositions.LUDecomposition Maven / Gradle / Ivy

Go to download

Apache Ignite® is a Distributed Database For High-Performance Computing With In-Memory Speed.

There is a newer version: 2.15.0
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.ignite.ml.math.decompositions;

import org.apache.ignite.ml.math.Destroyable;
import org.apache.ignite.ml.math.Matrix;
import org.apache.ignite.ml.math.Vector;
import org.apache.ignite.ml.math.exceptions.CardinalityException;
import org.apache.ignite.ml.math.exceptions.SingularMatrixException;

import static org.apache.ignite.ml.math.util.MatrixUtil.copy;
import static org.apache.ignite.ml.math.util.MatrixUtil.like;
import static org.apache.ignite.ml.math.util.MatrixUtil.likeVector;

/**
 * Calculates the LU-decomposition of a square matrix.
 * 

* This class is inspired by class from Apache Common Math with similar name.

* * @see MathWorld * @see Wikipedia * *

TODO: IGNITE-5828, Maybe we should make this class (and other decompositions) Externalizable.

*/ public class LUDecomposition implements Destroyable { /** Default bound to determine effective singularity in LU decomposition. */ private static final double DEFAULT_TOO_SMALL = 1e-11; /** Pivot permutation associated with LU decomposition. */ private final Vector pivot; /** Parity of the permutation associated with the LU decomposition. */ private boolean even; /** Singularity indicator. */ private boolean singular; /** Cached value of L. */ private Matrix cachedL; /** Cached value of U. */ private Matrix cachedU; /** Cached value of P. */ private Matrix cachedP; /** Original matrix. */ private Matrix matrix; /** Entries of LU decomposition. */ private Matrix lu; /** * Calculates the LU-decomposition of the given matrix. * This constructor uses 1e-11 as default value for the singularity * threshold. * * @param matrix Matrix to decompose. * @throws CardinalityException if matrix is not square. */ public LUDecomposition(Matrix matrix) { this(matrix, DEFAULT_TOO_SMALL); } /** * Calculates the LUP-decomposition of the given matrix. * * @param matrix Matrix to decompose. * @param singularityThreshold threshold (based on partial row norm). * @throws CardinalityException if matrix is not square. */ public LUDecomposition(Matrix matrix, double singularityThreshold) { assert matrix != null; int rows = matrix.rowSize(); int cols = matrix.columnSize(); if (rows != cols) throw new CardinalityException(rows, cols); this.matrix = matrix; lu = copy(matrix); pivot = likeVector(matrix); for (int i = 0; i < pivot.size(); i++) pivot.setX(i, i); even = true; singular = false; cachedL = null; cachedU = null; cachedP = null; for (int col = 0; col < cols; col++) { //upper for (int row = 0; row < col; row++) { Vector luRow = lu.viewRow(row); double sum = luRow.get(col); for (int i = 0; i < row; i++) sum -= luRow.getX(i) * lu.getX(i, col); luRow.setX(col, sum); } // permutation row int max = col; double largest = Double.NEGATIVE_INFINITY; // lower for (int row = col; row < rows; row++) { Vector luRow = lu.viewRow(row); double sum = luRow.getX(col); for (int i = 0; i < col; i++) sum -= luRow.getX(i) * lu.getX(i, col); luRow.setX(col, sum); if (Math.abs(sum) > largest) { largest = Math.abs(sum); max = row; } } // Singularity check if (Math.abs(lu.getX(max, col)) < singularityThreshold) { singular = true; return; } // Pivot if necessary if (max != col) { double tmp; Vector luMax = lu.viewRow(max); Vector luCol = lu.viewRow(col); for (int i = 0; i < cols; i++) { tmp = luMax.getX(i); luMax.setX(i, luCol.getX(i)); luCol.setX(i, tmp); } int temp = (int)pivot.getX(max); pivot.setX(max, pivot.getX(col)); pivot.setX(col, temp); even = !even; } // Divide the lower elements by the "winning" diagonal elt. final double luDiag = lu.getX(col, col); for (int row = col + 1; row < cols; row++) { double val = lu.getX(row, col) / luDiag; lu.setX(row, col, val); } } } /** * Destroys decomposition components and other internal components of decomposition. */ @Override public void destroy() { if (cachedL != null) cachedL.destroy(); if (cachedU != null) cachedU.destroy(); if (cachedP != null) cachedP.destroy(); lu.destroy(); } /** * Returns the matrix L of the decomposition. *

L is a lower-triangular matrix

* * @return the L matrix (or null if decomposed matrix is singular). */ public Matrix getL() { if ((cachedL == null) && !singular) { final int m = pivot.size(); cachedL = like(matrix); cachedL.assign(0.0); for (int i = 0; i < m; ++i) { for (int j = 0; j < i; ++j) cachedL.setX(i, j, lu.getX(i, j)); cachedL.setX(i, i, 1.0); } } return cachedL; } /** * Returns the matrix U of the decomposition. *

U is an upper-triangular matrix

* * @return the U matrix (or null if decomposed matrix is singular). */ public Matrix getU() { if ((cachedU == null) && !singular) { final int m = pivot.size(); cachedU = like(matrix); cachedU.assign(0.0); for (int i = 0; i < m; ++i) for (int j = i; j < m; ++j) cachedU.setX(i, j, lu.getX(i, j)); } return cachedU; } /** * Returns the P rows permutation matrix. *

P is a sparse matrix with exactly one element set to 1.0 in * each row and each column, all other elements being set to 0.0.

*

The positions of the 1 elements are given by the {@link #getPivot() * pivot permutation vector}.

* * @return the P rows permutation matrix (or null if decomposed matrix is singular). * @see #getPivot() */ public Matrix getP() { if ((cachedP == null) && !singular) { final int m = pivot.size(); cachedP = like(matrix); cachedP.assign(0.0); for (int i = 0; i < m; ++i) cachedP.setX(i, (int)pivot.get(i), 1.0); } return cachedP; } /** * Returns the pivot permutation vector. * * @return the pivot permutation vector. * @see #getP() */ public Vector getPivot() { return pivot.copy(); } /** * Return the determinant of the matrix. * * @return determinant of the matrix. */ public double determinant() { if (singular) return 0; final int m = pivot.size(); double determinant = even ? 1 : -1; for (int i = 0; i < m; i++) determinant *= lu.getX(i, i); return determinant; } /** * @param b Vector to solve using this decomposition. * @return Solution vector. */ public Vector solve(Vector b) { final int m = pivot.size(); if (b.size() != m) throw new CardinalityException(b.size(), m); if (singular) throw new SingularMatrixException(); final double[] bp = new double[m]; // Apply permutations to b for (int row = 0; row < m; row++) bp[row] = b.get((int)pivot.get(row)); // Solve LY = b for (int col = 0; col < m; col++) { final double bpCol = bp[col]; for (int i = col + 1; i < m; i++) bp[i] -= bpCol * lu.get(i, col); } // Solve UX = Y for (int col = m - 1; col >= 0; col--) { bp[col] /= lu.get(col, col); final double bpCol = bp[col]; for (int i = 0; i < col; i++) bp[i] -= bpCol * lu.get(i, col); } return b.like(m).assign(bp); } /** * @param b Matrix to solve using this decomposition. * @return Solution matrix. */ public Matrix solve(Matrix b) { final int m = pivot.size(); if (b.rowSize() != m) throw new CardinalityException(b.rowSize(), m); if (singular) throw new SingularMatrixException(); final int nColB = b.columnSize(); // Apply permutations to b final double[][] bp = new double[m][nColB]; for (int row = 0; row < m; row++) { final double[] bpRow = bp[row]; final int pRow = (int)pivot.get(row); for (int col = 0; col < nColB; col++) bpRow[col] = b.get(pRow, col); } // Solve LY = b for (int col = 0; col < m; col++) { final double[] bpCol = bp[col]; for (int i = col + 1; i < m; i++) { final double[] bpI = bp[i]; final double luICol = lu.get(i, col); for (int j = 0; j < nColB; j++) bpI[j] -= bpCol[j] * luICol; } } // Solve UX = Y for (int col = m - 1; col >= 0; col--) { final double[] bpCol = bp[col]; final double luDiag = lu.getX(col, col); for (int j = 0; j < nColB; j++) bpCol[j] /= luDiag; for (int i = 0; i < col; i++) { final double[] bpI = bp[i]; final double luICol = lu.get(i, col); for (int j = 0; j < nColB; j++) bpI[j] -= bpCol[j] * luICol; } } return b.like(b.rowSize(), b.columnSize()).assign(bp); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy