All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.ignite.ml.math.decompositions.SingularValueDecomposition Maven / Gradle / Ivy

Go to download

Apache Ignite® is a Distributed Database For High-Performance Computing With In-Memory Speed.

There is a newer version: 2.15.0
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.ignite.ml.math.decompositions;

import org.apache.ignite.ml.math.Algebra;
import org.apache.ignite.ml.math.Destroyable;
import org.apache.ignite.ml.math.Matrix;

import static org.apache.ignite.ml.math.util.MatrixUtil.like;

/**
 * Compute a singular value decomposition (SVD) of {@code (l x k)} matrix {@code m}.
 * 

This decomposition can be thought * as an extension of {@link EigenDecomposition} to rectangular matrices. The factorization we get is following:

*

{@code m = u * s * v^{*}}, where

*
  • {@code u} is a real or complex unitary matrix.
  • *
  • {@code s} is a rectangular diagonal matrix with non-negative real numbers on diagonal * (these numbers are singular values of {@code m}).
  • *
  • {@code v} is a real or complex unitary matrix.
*

If {@code m} is real then {@code u} and {@code v} are also real.

*

See also: Wikipedia article on SVD.

*

Note: complex case is currently not supported.

*/ public class SingularValueDecomposition implements Destroyable { // U and V. /** */ private final double[][] u; /** */ private final double[][] v; /** Singular values. */ private final double[] s; /** Row dimension. */ private final int m; /** Column dimension. */ private final int n; /** */ private Matrix arg; /** */ private boolean transpositionNeeded; /** * Singular value decomposition object. * * @param arg A rectangular matrix. */ public SingularValueDecomposition(Matrix arg) { assert arg != null; this.arg = arg; if (arg.rowSize() < arg.columnSize()) transpositionNeeded = true; double[][] a; if (transpositionNeeded) { // Use the transpose matrix. m = arg.columnSize(); n = arg.rowSize(); a = new double[m][n]; for (int i = 0; i < m; i++) for (int j = 0; j < n; j++) a[i][j] = arg.get(j, i); } else { m = arg.rowSize(); n = arg.columnSize(); a = new double[m][n]; for (int i = 0; i < m; i++) for (int j = 0; j < n; j++) a[i][j] = arg.get(i, j); } int nu = Math.min(m, n); s = new double[Math.min(m + 1, n)]; u = new double[m][nu]; v = new double[n][n]; double[] e = new double[n]; double[] work = new double[m]; int nct = Math.min(m - 1, n); int nrt = Math.max(0, Math.min(n - 2, m)); for (int k = 0; k < Math.max(nct, nrt); k++) { if (k < nct) { // Compute the transformation for the k-th column and // place the k-th diagonal in s[k]. Compute 2-norm of k-th // column without under/overflow. s[k] = 0; for (int i = k; i < m; i++) s[k] = Algebra.hypot(s[k], a[i][k]); if (s[k] != 0.0) { if (a[k][k] < 0.0) s[k] = -s[k]; for (int i = k; i < m; i++) a[i][k] /= s[k]; a[k][k] += 1.0; } s[k] = -s[k]; } for (int j = k + 1; j < n; j++) { if (k < nct && s[k] != 0.0) { // Apply the transformation. double t = 0; for (int i = k; i < m; i++) t += a[i][k] * a[i][j]; t = -t / a[k][k]; for (int i = k; i < m; i++) a[i][j] += t * a[i][k]; } // Place the k-th row of A into e for the // subsequent calculation of the row transformation. e[j] = a[k][j]; } if (k < nct) // Place the transformation in U for subsequent back // multiplication. for (int i = k; i < m; i++) u[i][k] = a[i][k]; if (k < nrt) { // Compute the k-th row transformation and place the // k-th super-diagonal in e[k]. // Compute 2-norm without under/overflow. e[k] = 0; for (int i = k + 1; i < n; i++) e[k] = Algebra.hypot(e[k], e[i]); if (e[k] != 0.0) { if (e[k + 1] < 0.0) e[k] = -e[k]; for (int i = k + 1; i < n; i++) e[i] /= e[k]; e[k + 1] += 1.0; } e[k] = -e[k]; if (k + 1 < m && e[k] != 0.0) { // Apply the transformation. for (int i = k + 1; i < m; i++) work[i] = 0.0; for (int j = k + 1; j < n; j++) for (int i = k + 1; i < m; i++) work[i] += e[j] * a[i][j]; for (int j = k + 1; j < n; j++) { double t = -e[j] / e[k + 1]; for (int i = k + 1; i < m; i++) a[i][j] += t * work[i]; } } // Place the transformation in V for subsequent // back multiplication. for (int i = k + 1; i < n; i++) v[i][k] = e[i]; } } // Set up the final bi-diagonal matrix or order p. int p = Math.min(n, m + 1); if (nct < n) s[nct] = a[nct][nct]; if (m < p) s[p - 1] = 0.0; if (nrt + 1 < p) e[nrt] = a[nrt][p - 1]; e[p - 1] = 0.0; // Generate U. for (int j = nct; j < nu; j++) { for (int i = 0; i < m; i++) u[i][j] = 0.0; u[j][j] = 1.0; } for (int k = nct - 1; k >= 0; k--) { if (s[k] != 0.0) { for (int j = k + 1; j < nu; j++) { double t = 0; for (int i = k; i < m; i++) t += u[i][k] * u[i][j]; t = -t / u[k][k]; for (int i = k; i < m; i++) u[i][j] += t * u[i][k]; } for (int i = k; i < m; i++) u[i][k] = -u[i][k]; u[k][k] = 1.0 + u[k][k]; for (int i = 0; i < k - 1; i++) u[i][k] = 0.0; } else { for (int i = 0; i < m; i++) u[i][k] = 0.0; u[k][k] = 1.0; } } // Generate V. for (int k = n - 1; k >= 0; k--) { if (k < nrt && e[k] != 0.0) { for (int j = k + 1; j < nu; j++) { double t = 0; for (int i = k + 1; i < n; i++) t += v[i][k] * v[i][j]; t = -t / v[k + 1][k]; for (int i = k + 1; i < n; i++) v[i][j] += t * v[i][k]; } } for (int i = 0; i < n; i++) v[i][k] = 0.0; v[k][k] = 1.0; } // Main iteration loop for the singular values. int pp = p - 1; int iter = 0; double eps = Math.pow(2.0, -52.0); double tiny = Math.pow(2.0, -966.0); while (p > 0) { int k; for (k = p - 2; k >= -1; k--) { if (k == -1) break; if (Math.abs(e[k]) <= tiny + eps * (Math.abs(s[k]) + Math.abs(s[k + 1]))) { e[k] = 0.0; break; } } int kase; if (k == p - 2) kase = 4; else { int ks; for (ks = p - 1; ks >= k; ks--) { if (ks == k) break; double t = (ks != p ? Math.abs(e[ks]) : 0.) + (ks != k + 1 ? Math.abs(e[ks - 1]) : 0.); if (Math.abs(s[ks]) <= tiny + eps * t) { s[ks] = 0.0; break; } } if (ks == k) kase = 3; else if (ks == p - 1) kase = 1; else { kase = 2; k = ks; } } k++; // Perform the task indicated by kase. switch (kase) { // Deflate negligible s(p). case 1: { double f = e[p - 2]; e[p - 2] = 0.0; for (int j = p - 2; j >= k; j--) { double t = Algebra.hypot(s[j], f); double cs = s[j] / t; double sn = f / t; s[j] = t; if (j != k) { f = -sn * e[j - 1]; e[j - 1] = cs * e[j - 1]; } for (int i = 0; i < n; i++) { t = cs * v[i][j] + sn * v[i][p - 1]; v[i][p - 1] = -sn * v[i][j] + cs * v[i][p - 1]; v[i][j] = t; } } } break; // Split at negligible s(k). case 2: { double f = e[k - 1]; e[k - 1] = 0.0; for (int j = k; j < p; j++) { double t = Algebra.hypot(s[j], f); double cs = s[j] / t; double sn = f / t; s[j] = t; f = -sn * e[j]; e[j] = cs * e[j]; for (int i = 0; i < m; i++) { t = cs * u[i][j] + sn * u[i][k - 1]; u[i][k - 1] = -sn * u[i][j] + cs * u[i][k - 1]; u[i][j] = t; } } } break; // Perform one qr step. case 3: { // Calculate the shift. double scale = Math.max(Math.max(Math.max(Math.max( Math.abs(s[p - 1]), Math.abs(s[p - 2])), Math.abs(e[p - 2])), Math.abs(s[k])), Math.abs(e[k])); double sp = s[p - 1] / scale; double spm1 = s[p - 2] / scale; double epm1 = e[p - 2] / scale; double sk = s[k] / scale; double ek = e[k] / scale; double b = ((spm1 + sp) * (spm1 - sp) + epm1 * epm1) / 2.0; double c = sp * epm1 * sp * epm1; double shift = 0.0; if (b != 0.0 || c != 0.0) { shift = Math.sqrt(b * b + c); if (b < 0.0) shift = -shift; shift = c / (b + shift); } double f = (sk + sp) * (sk - sp) + shift; double g = sk * ek; // Chase zeros. for (int j = k; j < p - 1; j++) { double t = Algebra.hypot(f, g); double cs = f / t; double sn = g / t; if (j != k) e[j - 1] = t; f = cs * s[j] + sn * e[j]; e[j] = cs * e[j] - sn * s[j]; g = sn * s[j + 1]; s[j + 1] = cs * s[j + 1]; for (int i = 0; i < n; i++) { t = cs * v[i][j] + sn * v[i][j + 1]; v[i][j + 1] = -sn * v[i][j] + cs * v[i][j + 1]; v[i][j] = t; } t = Algebra.hypot(f, g); cs = f / t; sn = g / t; s[j] = t; f = cs * e[j] + sn * s[j + 1]; s[j + 1] = -sn * e[j] + cs * s[j + 1]; g = sn * e[j + 1]; e[j + 1] = cs * e[j + 1]; if (j < m - 1) for (int i = 0; i < m; i++) { t = cs * u[i][j] + sn * u[i][j + 1]; u[i][j + 1] = -sn * u[i][j] + cs * u[i][j + 1]; u[i][j] = t; } } e[p - 2] = f; iter = iter + 1; } break; // Convergence. case 4: { // Make the singular values positive. if (s[k] <= 0.0) { s[k] = s[k] < 0.0 ? -s[k] : 0.0; for (int i = 0; i <= pp; i++) v[i][k] = -v[i][k]; } // Order the singular values. while (k < pp) { if (s[k] >= s[k + 1]) break; double t = s[k]; s[k] = s[k + 1]; s[k + 1] = t; if (k < n - 1) for (int i = 0; i < n; i++) { t = v[i][k + 1]; v[i][k + 1] = v[i][k]; v[i][k] = t; } if (k < m - 1) for (int i = 0; i < m; i++) { t = u[i][k + 1]; u[i][k + 1] = u[i][k]; u[i][k] = t; } k++; } iter = 0; p--; } break; default: throw new IllegalStateException(); } } } /** * Gets the two norm condition number, which is {@code max(S) / min(S)} . */ public double cond() { return s[0] / s[Math.min(m, n) - 1]; } /** * @return the diagonal matrix of singular values. */ public Matrix getS() { double[][] s = new double[n][n]; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) s[i][j] = 0.0; s[i][i] = this.s[i]; } return like(arg, n, n).assign(s); } /** * Gets the diagonal of {@code S}, which is a one-dimensional array of * singular values. * * @return diagonal of {@code S}. */ public double[] getSingularValues() { return s; } /** * Gets the left singular vectors {@code U}. * * @return {@code U} */ public Matrix getU() { if (transpositionNeeded) return like(arg, v.length, v.length).assign(v); else { int numCols = Math.min(m + 1, n); Matrix r = like(arg, m, numCols); for (int i = 0; i < m; i++) for (int j = 0; j < numCols; j++) r.set(i, j, u[i][j]); return r; } } /** * Gets the right singular vectors {@code V}. * * @return {@code V} */ public Matrix getV() { if (transpositionNeeded) { int numCols = Math.min(m + 1, n); Matrix r = like(arg, m, numCols); for (int i = 0; i < m; i++) for (int j = 0; j < numCols; j++) r.set(i, j, u[i][j]); return r; } else return like(arg, v.length, v.length).assign(v); } /** * Gets the two norm, which is {@code max(S)}. */ public double norm2() { return s[0]; } /** * Gets effective numerical matrix rank. */ public int rank() { double eps = Math.pow(2.0, -52.0); double tol = Math.max(m, n) * s[0] * eps; int r = 0; for (double value : s) if (value > tol) r++; return r; } /** * Gets [n × n] covariance matrix. * * @param minSingularVal Value below which singular values are ignored. */ Matrix getCovariance(double minSingularVal) { Matrix j = like(arg, s.length, s.length); Matrix vMat = like(arg, v.length, v.length).assign(v); for (int i = 0; i < s.length; i++) j.set(i, i, s[i] >= minSingularVal ? 1 / (s[i] * s[i]) : 0.0); return vMat.times(j).times(vMat.transpose()); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy