org.apache.ignite.ml.structures.preprocessing.LabeledDatasetLoader Maven / Gradle / Ivy
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.ignite.ml.structures.preprocessing;
import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Path;
import java.util.ArrayList;
import java.util.List;
import java.util.stream.Stream;
import org.apache.ignite.ml.math.Vector;
import org.apache.ignite.ml.math.exceptions.CardinalityException;
import org.apache.ignite.ml.math.exceptions.NoDataException;
import org.apache.ignite.ml.math.exceptions.knn.EmptyFileException;
import org.apache.ignite.ml.math.exceptions.knn.FileParsingException;
import org.apache.ignite.ml.structures.LabeledDataset;
import org.apache.ignite.ml.structures.LabeledVector;
import org.jetbrains.annotations.NotNull;
/** Data pre-processing step which loads data from different file types. */
public class LabeledDatasetLoader {
/**
* Datafile should keep class labels in the first column.
*
* @param pathToFile Path to file.
* @param separator Element to tokenize row on separate tokens.
* @param isDistributed Generates distributed dataset if true.
* @param isFallOnBadData Fall on incorrect data if true.
* @return Labeled Dataset parsed from file.
*/
public static LabeledDataset loadFromTxtFile(Path pathToFile, String separator, boolean isDistributed,
boolean isFallOnBadData) throws IOException {
Stream stream = Files.lines(pathToFile);
List list = new ArrayList<>();
stream.forEach(list::add);
final int rowSize = list.size();
List labels = new ArrayList<>();
List vectors = new ArrayList<>();
if (rowSize > 0) {
final int colSize = getColumnSize(separator, list) - 1;
if (colSize > 0) {
for (int i = 0; i < rowSize; i++) {
Double clsLb;
String[] rowData = list.get(i).split(separator);
try {
clsLb = Double.parseDouble(rowData[0]);
Vector vec = parseFeatures(pathToFile, isDistributed, isFallOnBadData, colSize, i, rowData);
labels.add(clsLb);
vectors.add(vec);
}
catch (NumberFormatException e) {
if (isFallOnBadData)
throw new FileParsingException(rowData[0], i, pathToFile);
}
}
LabeledVector[] data = new LabeledVector[vectors.size()];
for (int i = 0; i < vectors.size(); i++)
data[i] = new LabeledVector(vectors.get(i), labels.get(i));
return new LabeledDataset(data, colSize);
}
else
throw new NoDataException("File should contain first row with data");
}
else
throw new EmptyFileException(pathToFile.toString());
}
/** */
@NotNull private static Vector parseFeatures(Path pathToFile, boolean isDistributed, boolean isFallOnBadData,
int colSize, int rowIdx, String[] rowData) {
final Vector vec = LabeledDataset.emptyVector(colSize, isDistributed);
if (isFallOnBadData && rowData.length != colSize + 1)
throw new CardinalityException(colSize + 1, rowData.length);
double missedData = fillMissedData();
for (int j = 0; j < colSize; j++) {
try {
double feature = Double.parseDouble(rowData[j + 1]);
vec.set(j, feature);
}
catch (NumberFormatException e) {
if (isFallOnBadData)
throw new FileParsingException(rowData[j + 1], rowIdx, pathToFile);
else
vec.set(j, missedData);
}
catch (ArrayIndexOutOfBoundsException e){
vec.set(j, missedData);
}
}
return vec;
}
// TODO: IGNITE-7025 add filling with mean, mode, ignoring and so on
/** */
private static double fillMissedData() {
return 0.0;
}
/** */
private static int getColumnSize(String separator, List list) {
String[] rowData = list.get(0).split(separator, -1); // assume that all observation has the same length as a first row
return rowData.length;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy