All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.ignite.ml.svm.SVMLinearMultiClassClassificationModel Maven / Gradle / Ivy

Go to download

Apache Ignite® is a Distributed Database For High-Performance Computing With In-Memory Speed.

There is a newer version: 2.15.0
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.ignite.ml.svm;

import java.io.Serializable;
import java.util.HashMap;
import java.util.Map;
import java.util.Objects;
import java.util.TreeMap;
import org.apache.ignite.ml.Exportable;
import org.apache.ignite.ml.Exporter;
import org.apache.ignite.ml.Model;
import org.apache.ignite.ml.math.Vector;

/** Base class for multi-classification model for set of SVM classifiers. */
public class SVMLinearMultiClassClassificationModel implements Model, Exportable, Serializable {
    /** */
    private static final long serialVersionUID = -667986511191350227L;

    /** List of models associated with each class. */
    private Map models;

    /** */
    public SVMLinearMultiClassClassificationModel() {
        this.models = new HashMap<>();
    }

    /** {@inheritDoc} */
    @Override public Double apply(Vector input) {
        TreeMap maxMargins = new TreeMap<>();

        models.forEach((k, v) -> maxMargins.put(input.dot(v.weights()) + v.intercept(), k));

        return maxMargins.lastEntry().getValue();
    }

    /** {@inheritDoc} */
    @Override public 

void saveModel(Exporter exporter, P path) { exporter.save(this, path); } /** {@inheritDoc} */ @Override public boolean equals(Object o) { if (this == o) return true; if (o == null || getClass() != o.getClass()) return false; SVMLinearMultiClassClassificationModel mdl = (SVMLinearMultiClassClassificationModel)o; return Objects.equals(models, mdl.models); } /** {@inheritDoc} */ @Override public int hashCode() { return Objects.hash(models); } /** {@inheritDoc} */ @Override public String toString() { StringBuilder wholeStr = new StringBuilder(); models.forEach((clsLb, mdl) -> { wholeStr.append("The class with label ").append(clsLb).append(" has classifier: ").append(mdl.toString()).append(System.lineSeparator()); }); return wholeStr.toString(); } /** * Adds a specific SVM binary classifier to the bunch of same classifiers. * * @param clsLb The class label for the added model. * @param mdl The model. */ public void add(double clsLb, SVMLinearBinaryClassificationModel mdl) { models.put(clsLb, mdl); } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy