org.apache.ignite.ml.knn.regression.KNNRegressionModel Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of ignite-ml Show documentation
Show all versions of ignite-ml Show documentation
Apache Ignite® is a Distributed Database For High-Performance Computing With In-Memory Speed.
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.ignite.ml.knn.regression;
import java.util.List;
import org.apache.ignite.ml.dataset.Dataset;
import org.apache.ignite.ml.dataset.primitive.context.EmptyContext;
import org.apache.ignite.ml.knn.classification.KNNClassificationModel;
import org.apache.ignite.ml.math.exceptions.UnsupportedOperationException;
import org.apache.ignite.ml.math.primitives.vector.Vector;
import org.apache.ignite.ml.structures.LabeledVector;
import org.apache.ignite.ml.structures.LabeledVectorSet;
import org.apache.ignite.ml.util.ModelTrace;
/**
* This class provides kNN Multiple Linear Regression or Locally [weighted] regression (Simple and Weighted versions).
*
* This is an instance-based learning method.
*
*
* - Local means using nearby points (i.e. a nearest neighbors approach).
* - Weighted means we value points based upon how far away they are.
* - Regression means approximating a function.
*
*/
public class KNNRegressionModel extends KNNClassificationModel {
/** */
private static final long serialVersionUID = -721836321291120543L;
/**
* Builds the model via prepared dataset.
* @param dataset Specially prepared object to run algorithm over it.
*/
public KNNRegressionModel(Dataset> dataset) {
super(dataset);
}
/** {@inheritDoc} */
@Override public Double apply(Vector v) {
List neighbors = findKNearestNeighbors(v);
return predictYBasedOn(neighbors, v);
}
/** */
private double predictYBasedOn(List neighbors, Vector v) {
switch (stgy) {
case SIMPLE:
return simpleRegression(neighbors);
case WEIGHTED:
return weightedRegression(neighbors, v);
default:
throw new UnsupportedOperationException("Strategy " + stgy.name() + " is not supported");
}
}
/** */
private double weightedRegression(List neighbors, Vector v) {
double sum = 0.0;
double div = 0.0;
for (LabeledVector neighbor : neighbors) {
double distance = distanceMeasure.compute(v, neighbor.features());
sum += neighbor.label() * distance;
div += distance;
}
return sum / div;
}
/** */
private double simpleRegression(List neighbors) {
double sum = 0.0;
for (LabeledVector neighbor : neighbors)
sum += neighbor.label();
return sum / (double)k;
}
/** {@inheritDoc} */
@Override public String toString() {
return toString(false);
}
/** {@inheritDoc} */
@Override public String toString(boolean pretty) {
return ModelTrace.builder("KNNRegressionModel", pretty)
.addField("k", String.valueOf(k))
.addField("measure", distanceMeasure.getClass().getSimpleName())
.addField("strategy", stgy.name())
.toString();
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy