org.apache.ignite.ml.optimization.LossFunctions Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of ignite-ml Show documentation
Show all versions of ignite-ml Show documentation
Apache Ignite® is a Distributed Database For High-Performance Computing With In-Memory Speed.
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.ignite.ml.optimization;
import org.apache.ignite.ml.math.functions.IgniteDifferentiableVectorToDoubleFunction;
import org.apache.ignite.ml.math.functions.IgniteFunction;
import org.apache.ignite.ml.math.primitives.vector.Vector;
/**
* Class containing popular loss functions.
*/
public class LossFunctions {
/**
* Mean squared error loss function.
*/
public static IgniteFunction MSE = groundTruth ->
new IgniteDifferentiableVectorToDoubleFunction() {
/** {@inheritDoc} */
@Override public Vector differential(Vector pnt) {
double multiplier = 2.0 / pnt.size();
return pnt.minus(groundTruth).times(multiplier);
}
/** {@inheritDoc} */
@Override public Double apply(Vector vector) {
return groundTruth.copy().map(vector, (a, b) -> {
double diff = a - b;
return diff * diff;
}).sum() / (vector.size());
}
};
/**
* Log loss function.
*/
public static IgniteFunction LOG = groundTruth ->
new IgniteDifferentiableVectorToDoubleFunction() {
/** {@inheritDoc} */
@Override public Vector differential(Vector pnt) {
double multiplier = 2.0 / pnt.size();
return pnt.minus(groundTruth).times(multiplier);
}
/** {@inheritDoc} */
@Override public Double apply(Vector vector) {
return groundTruth.copy().map(vector,
(a, b) -> a == 1 ? - Math.log(b) : -Math.log(1 - b)
).sum();
}
};
/**
* L2 loss function.
*/
public static IgniteFunction L2 = groundTruth ->
new IgniteDifferentiableVectorToDoubleFunction() {
/** {@inheritDoc} */
@Override public Vector differential(Vector pnt) {
double multiplier = 2.0 / pnt.size();
return pnt.minus(groundTruth).times(multiplier);
}
/** {@inheritDoc} */
@Override public Double apply(Vector vector) {
return groundTruth.copy().map(vector, (a, b) -> {
double diff = a - b;
return diff * diff;
}).sum();
}
};
/**
* L1 loss function.
*/
public static IgniteFunction L1 = groundTruth ->
new IgniteDifferentiableVectorToDoubleFunction() {
/** {@inheritDoc} */
@Override public Vector differential(Vector pnt) {
double multiplier = 2.0 / pnt.size();
return pnt.minus(groundTruth).times(multiplier);
}
/** {@inheritDoc} */
@Override public Double apply(Vector vector) {
return groundTruth.copy().map(vector, (a, b) -> {
double diff = a - b;
return Math.abs(diff);
}).sum();
}
};
/**
* Hinge loss function.
*/
public static IgniteFunction HINGE = groundTruth ->
new IgniteDifferentiableVectorToDoubleFunction() {
/** {@inheritDoc} */
@Override public Vector differential(Vector pnt) {
double multiplier = 2.0 / pnt.size();
return pnt.minus(groundTruth).times(multiplier);
}
/** {@inheritDoc} */
@Override public Double apply(Vector vector) {
return Math.max(0, 1 - groundTruth.dot(vector));
}
};
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy