All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.mapdb.LongConcurrentHashMap Maven / Gradle / Ivy

The newest version!
/*
 *  Copyright (c) 2012 Jan Kotek
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 */

/* This code was adopted from Apache Harmony 'ConcurrentHashMap' with following
 * copyright:
 *
 * Written by Doug Lea with assistance from members of JCP JSR-166
 * Expert Group and released to the public domain, as explained at
 * http://creativecommons.org/licenses/publicdomain
 */

package org.mapdb;
import java.io.Serializable;
import java.util.Iterator;
import java.util.NoSuchElementException;
import java.util.Random;
import java.util.concurrent.locks.ReentrantLock;

/**
 * Thread safe LongMap. Is refactored version of 'ConcurrentHashMap'
 *
 * @author Jan Kotek
 * @author Doug Lea
 */
public class LongConcurrentHashMap< V>
        extends LongMap implements Serializable  {
    private static final long serialVersionUID = 7249069246763182397L;

    /*
     * The basic strategy is to subdivide the table among Segments,
     * each of which itself is a concurrently readable hash table.
     */

    /* ---------------- Constants -------------- */

    /**
     * The default initial capacity for this table,
     * used when not otherwise specified in a constructor.
     */
    static final int DEFAULT_INITIAL_CAPACITY = 16;

    /**
     * Salt added to keys before hashing, so it is harder to trigger hash collision attack.
     */
    protected final long hashSalt = new Random().nextLong();


    /**
     * The default load factor for this table, used when not
     * otherwise specified in a constructor.
     */
    static final float DEFAULT_LOAD_FACTOR = 0.75f;

    /**
     * The default concurrency level for this table, used when not
     * otherwise specified in a constructor.
     */
    static final int DEFAULT_CONCURRENCY_LEVEL = 16;

    /**
     * The maximum capacity, used if a higher value is implicitly
     * specified by either of the constructors with arguments.  MUST
     * be a power of two <= 1<<30 to ensure that entries are indexable
     * using ints.
     */
    static final int MAXIMUM_CAPACITY = 1 << 30;

    /**
     * The maximum number of segments to allow; used to bound
     * constructor arguments.
     */
    static final int MAX_SEGMENTS = 1 << 16; // slightly conservative

    /**
     * Number of unsynchronized retries in size and containsValue
     * methods before resorting to locking. This is used to avoid
     * unbounded retries if tables undergo continuous modification
     * which would make it impossible to obtain an accurate result.
     */
    static final int RETRIES_BEFORE_LOCK = 2;

    /* ---------------- Fields -------------- */

    /**
     * Mask value for indexing into segments. The upper bits of a
     * key's hash code are used to choose the segment.
     */
    final int segmentMask;

    /**
     * Shift value for indexing within segments.
     */
    final int segmentShift;

    /**
     * The segments, each of which is a specialized hash table
     */
    final Segment[] segments;


    /* ---------------- Small Utilities -------------- */


    /**
     * Returns the segment that should be used for key with given hash
     * @param hash the hash code for the key
     * @return the segment
     */
    final Segment segmentFor(int hash) {
        return segments[(hash >>> segmentShift) & segmentMask];
    }


    /* ---------------- Inner Classes -------------- */

    /**
     * LongConcurrentHashMap list entry. Note that this is never exported
     * out as a user-visible Map.Entry.
     *
     * Because the value field is volatile, not final, it is legal wrt
     * the Java Memory Model for an unsynchronized reader to see null
     * instead of initial value when read via a data race.  Although a
     * reordering leading to this is not likely to ever actually
     * occur, the Segment.readValueUnderLock method is used as a
     * backup in case a null (pre-initialized) value is ever seen in
     * an unsynchronized access method.
     */
    static final class HashEntry {
        final long key;
        final int hash;
        volatile V value;
        final HashEntry next;

        HashEntry(long key, int hash, HashEntry next, V value) {
            this.key = key;
            this.hash = hash;
            this.next = next;
            this.value = value;
        }

        @SuppressWarnings("unchecked")
        static  HashEntry[] newArray(int i) {
            return new HashEntry[i];
        }
    }

    /**
     * Segments are specialized versions of hash tables.  This
     * subclasses from ReentrantLock opportunistically, just to
     * simplify some locking and avoid separate construction.
     */
    static final class Segment extends ReentrantLock implements Serializable {
        /*
         * Segments maintain a table of entry lists that are ALWAYS
         * kept in a consistent state, so can be read without locking.
         * Next fields of nodes are immutable (final).  All list
         * additions are performed at the front of each bin. This
         * makes it easy to check changes, and also fast to traverse.
         * When nodes would otherwise be changed, new nodes are
         * created to replace them. This works well for hash tables
         * since the bin lists tend to be short. (The average length
         * is less than two for the default load factor threshold.)
         *
         * Read operations can thus proceed without locking, but rely
         * on selected uses of volatiles to ensure that completed
         * write operations performed by other threads are
         * noticed. For most purposes, the "count" field, tracking the
         * number of elements, serves as that volatile variable
         * ensuring visibility.  This is convenient because this field
         * needs to be read in many read operations anyway:
         *
         *   - All (unsynchronized) read operations must first read the
         *     "count" field, and should not look at table entries if
         *     it is 0.
         *
         *   - All (synchronized) write operations should write to
         *     the "count" field after structurally changing any bin.
         *     The operations must not take any action that could even
         *     momentarily cause a concurrent read operation to see
         *     inconsistent data. This is made easier by the nature of
         *     the read operations in Map. For example, no operation
         *     can reveal that the table has grown but the threshold
         *     has not yet been updated, so there are no atomicity
         *     requirements for this with respect to reads.
         *
         * As a guide, all critical volatile reads and writes to the
         * count field are marked in code comments.
         */

        private static final long serialVersionUID = 2249069246763182397L;

        /**
         * The number of elements in this segment's region.
         */
        transient volatile int count;

        /**
         * Number of updates that alter the size of the table. This is
         * used during bulk-read methods to make sure they see a
         * consistent snapshot: If modCounts change during a traversal
         * of segments computing size or checking containsValue, then
         * we might have an inconsistent view of state so (usually)
         * must retry.
         */
        transient int modCount;

        /**
         * The table is rehashed when its size exceeds this threshold.
         * (The value of this field is always (int)(capacity *
         * loadFactor).)
         */
        transient int threshold;

        /**
         * The per-segment table.
         */
        transient volatile HashEntry[] table;

        /**
         * The load factor for the hash table.  Even though this value
         * is same for all segments, it is replicated to avoid needing
         * links to outer object.
         * @serial
         */
        final float loadFactor;

        Segment(int initialCapacity, float lf) {
            super(CC.FAIR_LOCKS);
            loadFactor = lf;
            setTable(HashEntry.newArray(initialCapacity));
        }

        @SuppressWarnings("unchecked")
        static  Segment[] newArray(int i) {
            return new Segment[i];
        }

        /**
         * Sets table to new HashEntry array.
         * Call only while holding lock or in constructor.
         */
        void setTable(HashEntry[] newTable) {
            threshold = (int)(newTable.length * loadFactor);
            table = newTable;
        }

        /**
         * Returns properly casted first entry of bin for given hash.
         */
        HashEntry getFirst(int hash) {
            HashEntry[] tab = table;
            return tab[hash & (tab.length - 1)];
        }

        /**
         * Reads value field of an entry under lock. Called if value
         * field ever appears to be null. This is possible only if a
         * compiler happens to reorder a HashEntry initialization with
         * its table assignment, which is legal under memory model
         * but is not known to ever occur.
         */
        V readValueUnderLock(HashEntry e) {
            lock();
            try {
                return e.value;
            } finally {
                unlock();
            }
        }

        /* Specialized implementations of map methods */

        V get(final long key, int hash) {
            if (count != 0) { // read-volatile
                HashEntry e = getFirst(hash);
                while (e != null) {
                    if (e.hash == hash && key == e.key) {
                        V v = e.value;
                        if (v != null)
                            return v;
                        return readValueUnderLock(e); // recheck
                    }
                    e = e.next;
                }
            }
            return null;
        }

        boolean containsKey(final long key, int hash) {
            if (count != 0) { // read-volatile
                HashEntry e = getFirst(hash);
                while (e != null) {
                    if (e.hash == hash && key == e.key)
                        return true;
                    e = e.next;
                }
            }
            return false;
        }

        boolean containsValue(Object value) {
            if (count != 0) { // read-volatile
                HashEntry[] tab = table;
                //int len = tab.length;
                for (HashEntry aTab : tab) {
                    for (HashEntry e = aTab; e != null; e = e.next) {
                        V v = e.value;
                        if (v == null) // recheck
                            v = readValueUnderLock(e);
                        if (value.equals(v))
                            return true;
                    }
                }
            }
            return false;
        }

        boolean replace(long key, int hash, V oldValue, V newValue) {
            lock();
            try {
                HashEntry e = getFirst(hash);
                while (e != null && (e.hash != hash || key!=e.key))
                    e = e.next;

                boolean replaced = false;
                if (e != null && oldValue.equals(e.value)) {
                    replaced = true;
                    e.value = newValue;
                }
                return replaced;
            } finally {
                unlock();
            }
        }

        V replace(long key, int hash, V newValue) {
            lock();
            try {
                HashEntry e = getFirst(hash);
                while (e != null && (e.hash != hash || key != e.key))
                    e = e.next;

                V oldValue = null;
                if (e != null) {
                    oldValue = e.value;
                    e.value = newValue;
                }
                return oldValue;
            } finally {
                unlock();
            }
        }


        V put(long key, int hash, V value, boolean onlyIfAbsent) {
            lock();
            try {
                int c = count;
                if (c++ > threshold) // ensure capacity
                    rehash();
                HashEntry[] tab = table;
                int index = hash & (tab.length - 1);
                HashEntry first = tab[index];
                HashEntry e = first;
                while (e != null && (e.hash != hash || key!=e.key))
                    e = e.next;

                V oldValue;
                if (e != null) {
                    oldValue = e.value;
                    if (!onlyIfAbsent)
                        e.value = value;
                }
                else {
                    oldValue = null;
                    ++modCount;
                    tab[index] = new HashEntry(key, hash, first, value);
                    count = c; // write-volatile
                }
                return oldValue;
            } finally {
                unlock();
            }
        }

        void rehash() {
            HashEntry[] oldTable = table;
            int oldCapacity = oldTable.length;
            if (oldCapacity >= MAXIMUM_CAPACITY)
                return;

            /*
             * Reclassify nodes in each list to new Map.  Because we are
             * using power-of-two expansion, the elements from each bin
             * must either stay at same index, or move with a power of two
             * offset. We eliminate unnecessary node creation by catching
             * cases where old nodes can be reused because their next
             * fields won't change. Statistically, at the default
             * threshold, only about one-sixth of them need cloning when
             * a table doubles. The nodes they replace will be garbage
             * collectable as soon as they are no longer referenced by any
             * reader thread that may be in the midst of traversing table
             * right now.
             */

            HashEntry[] newTable = HashEntry.newArray(oldCapacity<<1);
            threshold = (int)(newTable.length * loadFactor);
            int sizeMask = newTable.length - 1;
            for (HashEntry e : oldTable) {
                // We need to guarantee that any existing reads of old Map can
                //  proceed. So we cannot yet null out each bin.
                if (e != null) {
                    HashEntry next = e.next;
                    int idx = e.hash & sizeMask;

                    //  Single node on list
                    if (next == null)
                        newTable[idx] = e;

                    else {
                        // Reuse trailing consecutive sequence at same slot
                        HashEntry lastRun = e;
                        int lastIdx = idx;
                        for (HashEntry last = next;
                             last != null;
                             last = last.next) {
                            int k = last.hash & sizeMask;
                            if (k != lastIdx) {
                                lastIdx = k;
                                lastRun = last;
                            }
                        }
                        newTable[lastIdx] = lastRun;

                        // Clone all remaining nodes
                        for (HashEntry p = e; p != lastRun; p = p.next) {
                            int k = p.hash & sizeMask;
                            HashEntry n = newTable[k];
                            newTable[k] = new HashEntry(p.key, p.hash,
                                    n, p.value);
                        }
                    }
                }
            }
            table = newTable;
        }

        /**
         * Remove; match on key only if value null, else match both.
         */
        V remove(final long key, int hash, Object value) {
            lock();
            try {
                int c = count - 1;
                HashEntry[] tab = table;
                int index = hash & (tab.length - 1);
                HashEntry first = tab[index];
                HashEntry e = first;
                while (e != null && (e.hash != hash || key!=e.key))
                    e = e.next;

                V oldValue = null;
                if (e != null) {
                    V v = e.value;
                    if (value == null || value.equals(v)) {
                        oldValue = v;
                        // All entries following removed node can stay
                        // in list, but all preceding ones need to be
                        // cloned.
                        ++modCount;
                        HashEntry newFirst = e.next;
                        for (HashEntry p = first; p != e; p = p.next)
                            newFirst = new HashEntry(p.key, p.hash,
                                                          newFirst, p.value);
                        tab[index] = newFirst;
                        count = c; // write-volatile
                    }
                }
                return oldValue;
            } finally {
                unlock();
            }
        }

        void clear() {
            if (count != 0) {
                lock();
                try {
                    HashEntry[] tab = table;
                    for (int i = 0; i < tab.length ; i++)
                        tab[i] = null;
                    ++modCount;
                    count = 0; // write-volatile
                } finally {
                    unlock();
                }
            }
        }
    }



    /* ---------------- Public operations -------------- */

    /**
     * Creates a new, empty map with the specified initial
     * capacity, load factor and concurrency level.
     *
     * @param initialCapacity the initial capacity. The implementation
     * performs internal sizing to accommodate this many elements.
     * @param loadFactor  the load factor threshold, used to control resizing.
     * Resizing may be performed when the average number of elements per
     * bin exceeds this threshold.
     * @param concurrencyLevel the estimated number of concurrently
     * updating threads. The implementation performs internal sizing
     * to try to accommodate this many threads.
     * @throws IllegalArgumentException if the initial capacity is
     * negative or the load factor or concurrencyLevel are
     * nonpositive.
     */
    public LongConcurrentHashMap(int initialCapacity,
                                 float loadFactor, int concurrencyLevel) {
        if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)
            throw new IllegalArgumentException();

        if (concurrencyLevel > MAX_SEGMENTS)
            concurrencyLevel = MAX_SEGMENTS;

        // Find power-of-two sizes best matching arguments
        int sshift = 0;
        int ssize = 1;
        while (ssize < concurrencyLevel) {
            ++sshift;
            ssize <<= 1;
        }
        segmentShift = 32 - sshift;
        segmentMask = ssize - 1;
        this.segments = Segment.newArray(ssize);

        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;
        int c = initialCapacity / ssize;
        if (c * ssize < initialCapacity)
            ++c;
        int cap = 1;
        while (cap < c)
            cap <<= 1;

        for (int i = 0; i < this.segments.length; ++i)
            this.segments[i] = new Segment(cap, loadFactor);
    }

    /**
     * Creates a new, empty map with the specified initial capacity,
     * and with default load factor (0.75) and concurrencyLevel (16).
     *
     * @param initialCapacity the initial capacity. The implementation
     * performs internal sizing to accommodate this many elements.
     * @throws IllegalArgumentException if the initial capacity of
     * elements is negative.
     */
    public LongConcurrentHashMap(int initialCapacity) {
        this(initialCapacity, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
    }

    /**
     * Creates a new, empty map with a default initial capacity (16),
     * load factor (0.75) and concurrencyLevel (16).
     */
    public LongConcurrentHashMap() {
        this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
    }

    /**
     * Returns true if this map contains no key-value mappings.
     *
     * @return true if this map contains no key-value mappings
     */
    @Override
	public boolean isEmpty() {
        final Segment[] segments = this.segments;
        /*
         * We keep track of per-segment modCounts to avoid ABA
         * problems in which an element in one segment was added and
         * in another removed during traversal, in which case the
         * table was never actually empty at any point. Note the
         * similar use of modCounts in the size() and containsValue()
         * methods, which are the only other methods also susceptible
         * to ABA problems.
         */
        int[] mc = new int[segments.length];
        int mcsum = 0;
        for (int i = 0; i < segments.length; ++i) {
            if (segments[i].count != 0)
                return false;
            else
                mcsum += mc[i] = segments[i].modCount;
        }
        // If mcsum happens to be zero, then we know we got a snapshot
        // before any modifications at all were made.  This is
        // probably common enough to bother tracking.
        if (mcsum != 0) {
            for (int i = 0; i < segments.length; ++i) {
                if (segments[i].count != 0 ||
                    mc[i] != segments[i].modCount)
                    return false;
            }
        }
        return true;
    }

    /**
     * Returns the number of key-value mappings in this map.  If the
     * map contains more than Integer.MAX_VALUE elements, returns
     * Integer.MAX_VALUE.
     *
     * @return the number of key-value mappings in this map
     */
    @Override
	public int size() {
        final Segment[] segments = this.segments;
        long sum = 0;
        long check = 0;
        int[] mc = new int[segments.length];
        // Try a few times to get accurate count. On failure due to
        // continuous async changes in table, resort to locking.
        for (int k = 0; k < RETRIES_BEFORE_LOCK; ++k) {
            check = 0;
            sum = 0;
            int mcsum = 0;
            for (int i = 0; i < segments.length; ++i) {
                sum += segments[i].count;
                mcsum += mc[i] = segments[i].modCount;
            }
            if (mcsum != 0) {
                for (int i = 0; i < segments.length; ++i) {
                    check += segments[i].count;
                    if (mc[i] != segments[i].modCount) {
                        check = -1; // force retry
                        break;
                    }
                }
            }
            if (check == sum)
                break;
        }
        if (check != sum) { // Resort to locking all segments
            sum = 0;
            for (Segment segment : segments) segment.lock();
            for (Segment segment : segments) sum += segment.count;
            for (Segment segment : segments) segment.unlock();
        }
        if (sum > Integer.MAX_VALUE)
            return Integer.MAX_VALUE;
        else
            return (int)sum;
    }

    @Override
    public Iterator valuesIterator() {
        return new ValueIterator();
    }

    @Override
    public LongMapIterator longMapIterator() {
        return new MapIterator();
    }

    /**
     * Returns the value to which the specified key is mapped,
     * or {@code null} if this map contains no mapping for the key.
     *
     * 

More formally, if this map contains a mapping from a key * {@code k} to a value {@code keys} such that {@code key.equals(k)}, * then this method returns {@code keys}; otherwise it returns * {@code null}. (There can be at most one such mapping.) * * @throws NullPointerException if the specified key is null */ @Override public V get(long key) { final int hash = LongHashMap.longHash(key^hashSalt); return segmentFor(hash).get(key, hash); } /** * Tests if the specified object is a key in this table. * * @param key possible key * @return true if and only if the specified object * is a key in this table, as determined by the * equals method; false otherwise. * @throws NullPointerException if the specified key is null */ public boolean containsKey(long key) { final int hash = LongHashMap.longHash(key^hashSalt); return segmentFor(hash).containsKey(key, hash); } /** * Returns true if this map maps one or more keys to the * specified value. Note: This method requires a full internal * traversal of the hash table, and so is much slower than * method containsKey. * * @param value value whose presence in this map is to be tested * @return true if this map maps one or more keys to the * specified value * @throws NullPointerException if the specified value is null */ public boolean containsValue(Object value) { if (value == null) throw new NullPointerException(); // See explanation of modCount use above final Segment[] segments = this.segments; int[] mc = new int[segments.length]; // Try a few times without locking for (int k = 0; k < RETRIES_BEFORE_LOCK; ++k) { //int sum = 0; int mcsum = 0; for (int i = 0; i < segments.length; ++i) { //int c = segments[i].count; mcsum += mc[i] = segments[i].modCount; if (segments[i].containsValue(value)) return true; } boolean cleanSweep = true; if (mcsum != 0) { for (int i = 0; i < segments.length; ++i) { //int c = segments[i].count; if (mc[i] != segments[i].modCount) { cleanSweep = false; break; } } } if (cleanSweep) return false; } // Resort to locking all segments for (Segment segment : segments) segment.lock(); boolean found = false; try { for (Segment segment : segments) { if (segment.containsValue(value)) { found = true; break; } } } finally { for (Segment segment : segments) segment.unlock(); } return found; } /** * Maps the specified key to the specified value in this table. * Neither the key nor the value can be null. * *

The value can be retrieved by calling the get method * with a key that is equal to the original key. * * @param key key with which the specified value is to be associated * @param value value to be associated with the specified key * @return the previous value associated with key, or * null if there was no mapping for key * @throws NullPointerException if the specified key or value is null */ @Override public V put(long key, V value) { if (value == null) throw new NullPointerException(); final int hash = LongHashMap.longHash(key^hashSalt); return segmentFor(hash).put(key, hash, value, false); } /** * * * @return the previous value associated with the specified key, * or null if there was no mapping for the key * @throws NullPointerException if the specified key or value is null */ public V putIfAbsent(long key, V value) { if (value == null) throw new NullPointerException(); final int hash = LongHashMap.longHash(key^hashSalt); return segmentFor(hash).put(key, hash, value, true); } /** * Removes the key (and its corresponding value) from this map. * This method does nothing if the key is not in the map. * * @param key the key that needs to be removed * @return the previous value associated with key, or * null if there was no mapping for key * @throws NullPointerException if the specified key is null */ @Override public V remove(long key) { final int hash = LongHashMap.longHash(key^hashSalt); return segmentFor(hash).remove(key, hash, null); } /** * * * @throws NullPointerException if the specified key is null */ public boolean remove(long key, Object value) { final int hash = LongHashMap.longHash(key^hashSalt); return value != null && segmentFor(hash).remove(key, hash, value) != null; } /** * * * @throws NullPointerException if any of the arguments are null */ public boolean replace(long key, V oldValue, V newValue) { if (oldValue == null || newValue == null) throw new NullPointerException(); final int hash = LongHashMap.longHash(key^hashSalt); return segmentFor(hash).replace(key, hash, oldValue, newValue); } /** * * * @return the previous value associated with the specified key, * or null if there was no mapping for the key * @throws NullPointerException if the specified key or value is null */ public V replace(long key, V value) { if (value == null) throw new NullPointerException(); final int hash = LongHashMap.longHash(key^hashSalt); return segmentFor(hash).replace(key, hash, value); } /** * Removes all of the mappings from this map. */ @Override public void clear() { for (Segment segment : segments) segment.clear(); } /* ---------------- Iterator Support -------------- */ abstract class HashIterator { int nextSegmentIndex; int nextTableIndex; HashEntry[] currentTable; HashEntry< V> nextEntry; HashEntry< V> lastReturned; HashIterator() { nextSegmentIndex = segments.length - 1; nextTableIndex = -1; advance(); } final void advance() { if (nextEntry != null && (nextEntry = nextEntry.next) != null) return; while (nextTableIndex >= 0) { if ( (nextEntry = currentTable[nextTableIndex--]) != null) return; } while (nextSegmentIndex >= 0) { Segment seg = segments[nextSegmentIndex--]; if (seg.count != 0) { currentTable = seg.table; for (int j = currentTable.length - 1; j >= 0; --j) { if ( (nextEntry = currentTable[j]) != null) { nextTableIndex = j - 1; return; } } } } } public boolean hasNext() { return nextEntry != null; } HashEntry nextEntry() { if (nextEntry == null) throw new NoSuchElementException(); lastReturned = nextEntry; advance(); return lastReturned; } public void remove() { if (lastReturned == null) throw new IllegalStateException(); LongConcurrentHashMap.this.remove(lastReturned.key); lastReturned = null; } } final class KeyIterator extends HashIterator implements Iterator { @Override public Long next() { return super.nextEntry().key; } } final class ValueIterator extends HashIterator implements Iterator { @Override public V next() { return super.nextEntry().value; } } final class MapIterator extends HashIterator implements LongMapIterator{ private long key; private V value; @Override public boolean moveToNext() { if(!hasNext()) return false; HashEntry next = nextEntry(); key = next.key; value = next.value; return true; } @Override public long key() { return key; } @Override public V value() { return value; } } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy