All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.lucene.search.similarities.LMDirichletSimilarity Maven / Gradle / Ivy

There is a newer version: 1.9.8
Show newest version
/*
 * COPIED FROM APACHE LUCENE 4.7.2
 *
 * Git URL: [email protected]:apache/lucene.git, tag: releases/lucene-solr/4.7.2, path: lucene/core/src/java
 *
 * (see https://issues.apache.org/jira/browse/OAK-10786 for details)
 */

package org.apache.lucene.search.similarities;

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

import java.util.Locale;

import org.apache.lucene.search.Explanation;

/**
 * Bayesian smoothing using Dirichlet priors. From Chengxiang Zhai and John
 * Lafferty. 2001. A study of smoothing methods for language models applied to
 * Ad Hoc information retrieval. In Proceedings of the 24th annual international
 * ACM SIGIR conference on Research and development in information retrieval
 * (SIGIR '01). ACM, New York, NY, USA, 334-342.
 * 

* The formula as defined the paper assigns a negative score to documents that * contain the term, but with fewer occurrences than predicted by the collection * language model. The Lucene implementation returns {@code 0} for such * documents. *

* * @lucene.experimental */ public class LMDirichletSimilarity extends LMSimilarity { /** The μ parameter. */ private final float mu; /** Instantiates the similarity with the provided μ parameter. */ public LMDirichletSimilarity(CollectionModel collectionModel, float mu) { super(collectionModel); this.mu = mu; } /** Instantiates the similarity with the provided μ parameter. */ public LMDirichletSimilarity(float mu) { this.mu = mu; } /** Instantiates the similarity with the default μ value of 2000. */ public LMDirichletSimilarity(CollectionModel collectionModel) { this(collectionModel, 2000); } /** Instantiates the similarity with the default μ value of 2000. */ public LMDirichletSimilarity() { this(2000); } @Override protected float score(BasicStats stats, float freq, float docLen) { float score = stats.getTotalBoost() * (float)(Math.log(1 + freq / (mu * ((LMStats)stats).getCollectionProbability())) + Math.log(mu / (docLen + mu))); return score > 0.0f ? score : 0.0f; } @Override protected void explain(Explanation expl, BasicStats stats, int doc, float freq, float docLen) { if (stats.getTotalBoost() != 1.0f) { expl.addDetail(new Explanation(stats.getTotalBoost(), "boost")); } expl.addDetail(new Explanation(mu, "mu")); Explanation weightExpl = new Explanation(); weightExpl.setValue((float)Math.log(1 + freq / (mu * ((LMStats)stats).getCollectionProbability()))); weightExpl.setDescription("term weight"); expl.addDetail(weightExpl); expl.addDetail(new Explanation( (float)Math.log(mu / (docLen + mu)), "document norm")); super.explain(expl, stats, doc, freq, docLen); } /** Returns the μ parameter. */ public float getMu() { return mu; } @Override public String getName() { return String.format(Locale.ROOT, "Dirichlet(%f)", getMu()); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy