org.apache.jackrabbit.guava.common.primitives.Ints Maven / Gradle / Ivy
/*
* Copyright (C) 2008 The Guava Authors
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
* in compliance with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software distributed under the License
* is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
* or implied. See the License for the specific language governing permissions and limitations under
* the License.
*/
package com.google.common.primitives;
import static com.google.common.base.Preconditions.checkArgument;
import static com.google.common.base.Preconditions.checkElementIndex;
import static com.google.common.base.Preconditions.checkNotNull;
import static com.google.common.base.Preconditions.checkPositionIndexes;
import com.google.common.annotations.GwtCompatible;
import com.google.common.annotations.GwtIncompatible;
import com.google.common.base.Converter;
import java.io.Serializable;
import java.util.AbstractList;
import java.util.Arrays;
import java.util.Collection;
import java.util.Collections;
import java.util.Comparator;
import java.util.List;
import java.util.RandomAccess;
import java.util.Spliterator;
import java.util.Spliterators;
import javax.annotation.CheckForNull;
/**
* Static utility methods pertaining to {@code int} primitives, that are not already found in either
* {@link Integer} or {@link Arrays}.
*
* See the Guava User Guide article on primitive utilities.
*
* @author Kevin Bourrillion
* @since 1.0
*/
@GwtCompatible(emulated = true)
@ElementTypesAreNonnullByDefault
public final class Ints extends IntsMethodsForWeb {
private Ints() {}
/**
* The number of bytes required to represent a primitive {@code int} value.
*
*
Java 8+ users: use {@link Integer#BYTES} instead.
*/
public static final int BYTES = Integer.SIZE / Byte.SIZE;
/**
* The largest power of two that can be represented as an {@code int}.
*
* @since 10.0
*/
public static final int MAX_POWER_OF_TWO = 1 << (Integer.SIZE - 2);
/**
* Returns a hash code for {@code value}; equal to the result of invoking {@code ((Integer)
* value).hashCode()}.
*
*
Java 8+ users: use {@link Integer#hashCode(int)} instead.
*
* @param value a primitive {@code int} value
* @return a hash code for the value
*/
public static int hashCode(int value) {
return value;
}
/**
* Returns the {@code int} value that is equal to {@code value}, if possible.
*
* @param value any value in the range of the {@code int} type
* @return the {@code int} value that equals {@code value}
* @throws IllegalArgumentException if {@code value} is greater than {@link Integer#MAX_VALUE} or
* less than {@link Integer#MIN_VALUE}
*/
public static int checkedCast(long value) {
int result = (int) value;
checkArgument(result == value, "Out of range: %s", value);
return result;
}
/**
* Returns the {@code int} nearest in value to {@code value}.
*
* @param value any {@code long} value
* @return the same value cast to {@code int} if it is in the range of the {@code int} type,
* {@link Integer#MAX_VALUE} if it is too large, or {@link Integer#MIN_VALUE} if it is too
* small
*/
public static int saturatedCast(long value) {
if (value > Integer.MAX_VALUE) {
return Integer.MAX_VALUE;
}
if (value < Integer.MIN_VALUE) {
return Integer.MIN_VALUE;
}
return (int) value;
}
/**
* Compares the two specified {@code int} values. The sign of the value returned is the same as
* that of {@code ((Integer) a).compareTo(b)}.
*
*
Java 7+ users: this method should be treated as deprecated; use the equivalent {@link
* Integer#compare} method instead.
*
* @param a the first {@code int} to compare
* @param b the second {@code int} to compare
* @return a negative value if {@code a} is less than {@code b}; a positive value if {@code a} is
* greater than {@code b}; or zero if they are equal
*/
public static int compare(int a, int b) {
return (a < b) ? -1 : ((a > b) ? 1 : 0);
}
/**
* Returns {@code true} if {@code target} is present as an element anywhere in {@code array}.
*
* @param array an array of {@code int} values, possibly empty
* @param target a primitive {@code int} value
* @return {@code true} if {@code array[i] == target} for some value of {@code i}
*/
public static boolean contains(int[] array, int target) {
for (int value : array) {
if (value == target) {
return true;
}
}
return false;
}
/**
* Returns the index of the first appearance of the value {@code target} in {@code array}.
*
* @param array an array of {@code int} values, possibly empty
* @param target a primitive {@code int} value
* @return the least index {@code i} for which {@code array[i] == target}, or {@code -1} if no
* such index exists.
*/
public static int indexOf(int[] array, int target) {
return indexOf(array, target, 0, array.length);
}
// TODO(kevinb): consider making this public
private static int indexOf(int[] array, int target, int start, int end) {
for (int i = start; i < end; i++) {
if (array[i] == target) {
return i;
}
}
return -1;
}
/**
* Returns the start position of the first occurrence of the specified {@code target} within
* {@code array}, or {@code -1} if there is no such occurrence.
*
*
More formally, returns the lowest index {@code i} such that {@code Arrays.copyOfRange(array,
* i, i + target.length)} contains exactly the same elements as {@code target}.
*
* @param array the array to search for the sequence {@code target}
* @param target the array to search for as a sub-sequence of {@code array}
*/
public static int indexOf(int[] array, int[] target) {
checkNotNull(array, "array");
checkNotNull(target, "target");
if (target.length == 0) {
return 0;
}
outer:
for (int i = 0; i < array.length - target.length + 1; i++) {
for (int j = 0; j < target.length; j++) {
if (array[i + j] != target[j]) {
continue outer;
}
}
return i;
}
return -1;
}
/**
* Returns the index of the last appearance of the value {@code target} in {@code array}.
*
* @param array an array of {@code int} values, possibly empty
* @param target a primitive {@code int} value
* @return the greatest index {@code i} for which {@code array[i] == target}, or {@code -1} if no
* such index exists.
*/
public static int lastIndexOf(int[] array, int target) {
return lastIndexOf(array, target, 0, array.length);
}
// TODO(kevinb): consider making this public
private static int lastIndexOf(int[] array, int target, int start, int end) {
for (int i = end - 1; i >= start; i--) {
if (array[i] == target) {
return i;
}
}
return -1;
}
/**
* Returns the least value present in {@code array}.
*
* @param array a nonempty array of {@code int} values
* @return the value present in {@code array} that is less than or equal to every other value in
* the array
* @throws IllegalArgumentException if {@code array} is empty
*/
@GwtIncompatible(
"Available in GWT! Annotation is to avoid conflict with GWT specialization of base class.")
public static int min(int... array) {
checkArgument(array.length > 0);
int min = array[0];
for (int i = 1; i < array.length; i++) {
if (array[i] < min) {
min = array[i];
}
}
return min;
}
/**
* Returns the greatest value present in {@code array}.
*
* @param array a nonempty array of {@code int} values
* @return the value present in {@code array} that is greater than or equal to every other value
* in the array
* @throws IllegalArgumentException if {@code array} is empty
*/
@GwtIncompatible(
"Available in GWT! Annotation is to avoid conflict with GWT specialization of base class.")
public static int max(int... array) {
checkArgument(array.length > 0);
int max = array[0];
for (int i = 1; i < array.length; i++) {
if (array[i] > max) {
max = array[i];
}
}
return max;
}
/**
* Returns the value nearest to {@code value} which is within the closed range {@code [min..max]}.
*
*
If {@code value} is within the range {@code [min..max]}, {@code value} is returned
* unchanged. If {@code value} is less than {@code min}, {@code min} is returned, and if {@code
* value} is greater than {@code max}, {@code max} is returned.
*
* @param value the {@code int} value to constrain
* @param min the lower bound (inclusive) of the range to constrain {@code value} to
* @param max the upper bound (inclusive) of the range to constrain {@code value} to
* @throws IllegalArgumentException if {@code min > max}
* @since 21.0
*/
public static int constrainToRange(int value, int min, int max) {
checkArgument(min <= max, "min (%s) must be less than or equal to max (%s)", min, max);
return Math.min(Math.max(value, min), max);
}
/**
* Returns the values from each provided array combined into a single array. For example, {@code
* concat(new int[] {a, b}, new int[] {}, new int[] {c}} returns the array {@code {a, b, c}}.
*
* @param arrays zero or more {@code int} arrays
* @return a single array containing all the values from the source arrays, in order
*/
public static int[] concat(int[]... arrays) {
int length = 0;
for (int[] array : arrays) {
length += array.length;
}
int[] result = new int[length];
int pos = 0;
for (int[] array : arrays) {
System.arraycopy(array, 0, result, pos, array.length);
pos += array.length;
}
return result;
}
/**
* Returns a big-endian representation of {@code value} in a 4-element byte array; equivalent to
* {@code ByteBuffer.allocate(4).putInt(value).array()}. For example, the input value {@code
* 0x12131415} would yield the byte array {@code {0x12, 0x13, 0x14, 0x15}}.
*
*
If you need to convert and concatenate several values (possibly even of different types),
* use a shared {@link java.nio.ByteBuffer} instance, or use {@link
* com.google.common.io.ByteStreams#newDataOutput()} to get a growable buffer.
*/
public static byte[] toByteArray(int value) {
return new byte[] {
(byte) (value >> 24), (byte) (value >> 16), (byte) (value >> 8), (byte) value
};
}
/**
* Returns the {@code int} value whose big-endian representation is stored in the first 4 bytes of
* {@code bytes}; equivalent to {@code ByteBuffer.wrap(bytes).getInt()}. For example, the input
* byte array {@code {0x12, 0x13, 0x14, 0x15, 0x33}} would yield the {@code int} value {@code
* 0x12131415}.
*
*
Arguably, it's preferable to use {@link java.nio.ByteBuffer}; that library exposes much more
* flexibility at little cost in readability.
*
* @throws IllegalArgumentException if {@code bytes} has fewer than 4 elements
*/
public static int fromByteArray(byte[] bytes) {
checkArgument(bytes.length >= BYTES, "array too small: %s < %s", bytes.length, BYTES);
return fromBytes(bytes[0], bytes[1], bytes[2], bytes[3]);
}
/**
* Returns the {@code int} value whose byte representation is the given 4 bytes, in big-endian
* order; equivalent to {@code Ints.fromByteArray(new byte[] {b1, b2, b3, b4})}.
*
* @since 7.0
*/
public static int fromBytes(byte b1, byte b2, byte b3, byte b4) {
return b1 << 24 | (b2 & 0xFF) << 16 | (b3 & 0xFF) << 8 | (b4 & 0xFF);
}
private static final class IntConverter extends Converter
implements Serializable {
static final Converter INSTANCE = new IntConverter();
@Override
protected Integer doForward(String value) {
return Integer.decode(value);
}
@Override
protected String doBackward(Integer value) {
return value.toString();
}
@Override
public String toString() {
return "Ints.stringConverter()";
}
private Object readResolve() {
return INSTANCE;
}
private static final long serialVersionUID = 1;
}
/**
* Returns a serializable converter object that converts between strings and integers using {@link
* Integer#decode} and {@link Integer#toString()}. The returned converter throws {@link
* NumberFormatException} if the input string is invalid.
*
* Warning: please see {@link Integer#decode} to understand exactly how strings are
* parsed. For example, the string {@code "0123"} is treated as octal and converted to the
* value {@code 83}.
*
* @since 16.0
*/
public static Converter stringConverter() {
return IntConverter.INSTANCE;
}
/**
* Returns an array containing the same values as {@code array}, but guaranteed to be of a
* specified minimum length. If {@code array} already has a length of at least {@code minLength},
* it is returned directly. Otherwise, a new array of size {@code minLength + padding} is
* returned, containing the values of {@code array}, and zeroes in the remaining places.
*
* @param array the source array
* @param minLength the minimum length the returned array must guarantee
* @param padding an extra amount to "grow" the array by if growth is necessary
* @throws IllegalArgumentException if {@code minLength} or {@code padding} is negative
* @return an array containing the values of {@code array}, with guaranteed minimum length {@code
* minLength}
*/
public static int[] ensureCapacity(int[] array, int minLength, int padding) {
checkArgument(minLength >= 0, "Invalid minLength: %s", minLength);
checkArgument(padding >= 0, "Invalid padding: %s", padding);
return (array.length < minLength) ? Arrays.copyOf(array, minLength + padding) : array;
}
/**
* Returns a string containing the supplied {@code int} values separated by {@code separator}. For
* example, {@code join("-", 1, 2, 3)} returns the string {@code "1-2-3"}.
*
* @param separator the text that should appear between consecutive values in the resulting string
* (but not at the start or end)
* @param array an array of {@code int} values, possibly empty
*/
public static String join(String separator, int... array) {
checkNotNull(separator);
if (array.length == 0) {
return "";
}
// For pre-sizing a builder, just get the right order of magnitude
StringBuilder builder = new StringBuilder(array.length * 5);
builder.append(array[0]);
for (int i = 1; i < array.length; i++) {
builder.append(separator).append(array[i]);
}
return builder.toString();
}
/**
* Returns a comparator that compares two {@code int} arrays lexicographically. That is, it
* compares, using {@link #compare(int, int)}), the first pair of values that follow any common
* prefix, or when one array is a prefix of the other, treats the shorter array as the lesser. For
* example, {@code [] < [1] < [1, 2] < [2]}.
*
* The returned comparator is inconsistent with {@link Object#equals(Object)} (since arrays
* support only identity equality), but it is consistent with {@link Arrays#equals(int[], int[])}.
*
* @since 2.0
*/
public static Comparator lexicographicalComparator() {
return LexicographicalComparator.INSTANCE;
}
private enum LexicographicalComparator implements Comparator {
INSTANCE;
@Override
public int compare(int[] left, int[] right) {
int minLength = Math.min(left.length, right.length);
for (int i = 0; i < minLength; i++) {
int result = Ints.compare(left[i], right[i]);
if (result != 0) {
return result;
}
}
return left.length - right.length;
}
@Override
public String toString() {
return "Ints.lexicographicalComparator()";
}
}
/**
* Sorts the elements of {@code array} in descending order.
*
* @since 23.1
*/
public static void sortDescending(int[] array) {
checkNotNull(array);
sortDescending(array, 0, array.length);
}
/**
* Sorts the elements of {@code array} between {@code fromIndex} inclusive and {@code toIndex}
* exclusive in descending order.
*
* @since 23.1
*/
public static void sortDescending(int[] array, int fromIndex, int toIndex) {
checkNotNull(array);
checkPositionIndexes(fromIndex, toIndex, array.length);
Arrays.sort(array, fromIndex, toIndex);
reverse(array, fromIndex, toIndex);
}
/**
* Reverses the elements of {@code array}. This is equivalent to {@code
* Collections.reverse(Ints.asList(array))}, but is likely to be more efficient.
*
* @since 23.1
*/
public static void reverse(int[] array) {
checkNotNull(array);
reverse(array, 0, array.length);
}
/**
* Reverses the elements of {@code array} between {@code fromIndex} inclusive and {@code toIndex}
* exclusive. This is equivalent to {@code
* Collections.reverse(Ints.asList(array).subList(fromIndex, toIndex))}, but is likely to be more
* efficient.
*
* @throws IndexOutOfBoundsException if {@code fromIndex < 0}, {@code toIndex > array.length}, or
* {@code toIndex > fromIndex}
* @since 23.1
*/
public static void reverse(int[] array, int fromIndex, int toIndex) {
checkNotNull(array);
checkPositionIndexes(fromIndex, toIndex, array.length);
for (int i = fromIndex, j = toIndex - 1; i < j; i++, j--) {
int tmp = array[i];
array[i] = array[j];
array[j] = tmp;
}
}
/**
* Performs a right rotation of {@code array} of "distance" places, so that the first element is
* moved to index "distance", and the element at index {@code i} ends up at index {@code (distance
* + i) mod array.length}. This is equivalent to {@code Collections.rotate(Ints.asList(array),
* distance)}, but is considerably faster and avoids allocation and garbage collection.
*
* The provided "distance" may be negative, which will rotate left.
*
* @since 32.0.0
*/
public static void rotate(int[] array, int distance) {
rotate(array, distance, 0, array.length);
}
/**
* Performs a right rotation of {@code array} between {@code fromIndex} inclusive and {@code
* toIndex} exclusive. This is equivalent to {@code
* Collections.rotate(Ints.asList(array).subList(fromIndex, toIndex), distance)}, but is
* considerably faster and avoids allocations and garbage collection.
*
*
The provided "distance" may be negative, which will rotate left.
*
* @throws IndexOutOfBoundsException if {@code fromIndex < 0}, {@code toIndex > array.length}, or
* {@code toIndex > fromIndex}
* @since 32.0.0
*/
public static void rotate(int[] array, int distance, int fromIndex, int toIndex) {
// There are several well-known algorithms for rotating part of an array (or, equivalently,
// exchanging two blocks of memory). This classic text by Gries and Mills mentions several:
// https://ecommons.cornell.edu/bitstream/handle/1813/6292/81-452.pdf.
// (1) "Reversal", the one we have here.
// (2) "Dolphin". If we're rotating an array a of size n by a distance of d, then element a[0]
// ends up at a[d], which in turn ends up at a[2d], and so on until we get back to a[0].
// (All indices taken mod n.) If d and n are mutually prime, all elements will have been
// moved at that point. Otherwise, we can rotate the cycle a[1], a[1 + d], a[1 + 2d], etc,
// then a[2] etc, and so on until we have rotated all elements. There are gcd(d, n) cycles
// in all.
// (3) "Successive". We can consider that we are exchanging a block of size d (a[0..d-1]) with a
// block of size n-d (a[d..n-1]), where in general these blocks have different sizes. If we
// imagine a line separating the first block from the second, we can proceed by exchanging
// the smaller of these blocks with the far end of the other one. That leaves us with a
// smaller version of the same problem.
// Say we are rotating abcdefgh by 5. We start with abcde|fgh. The smaller block is [fgh]:
// [abc]de|[fgh] -> [fgh]de|[abc]. Now [fgh] is in the right place, but we need to swap [de]
// with [abc]: fgh[de]|a[bc] -> fgh[bc]|a[de]. Now we need to swap [a] with [bc]:
// fgh[b]c|[a]de -> fgh[a]c|[b]de. Finally we need to swap [c] with [b]:
// fgha[c]|[b]de -> fgha[b]|[c]de. Because these two blocks are the same size, we are done.
// The Dolphin algorithm is attractive because it does the fewest array reads and writes: each
// array slot is read and written exactly once. However, it can have very poor memory locality:
// benchmarking shows it can take 7 times longer than the other two in some cases. The other two
// do n swaps, minus a delta (0 or 2 for Reversal, gcd(d, n) for Successive), so that's about
// twice as many reads and writes. But benchmarking shows that they usually perform better than
// Dolphin. Reversal is about as good as Successive on average, and it is much simpler,
// especially since we already have a `reverse` method.
checkNotNull(array);
checkPositionIndexes(fromIndex, toIndex, array.length);
if (array.length <= 1) {
return;
}
int length = toIndex - fromIndex;
// Obtain m = (-distance mod length), a non-negative value less than "length". This is how many
// places left to rotate.
int m = -distance % length;
m = (m < 0) ? m + length : m;
// The current index of what will become the first element of the rotated section.
int newFirstIndex = m + fromIndex;
if (newFirstIndex == fromIndex) {
return;
}
reverse(array, fromIndex, newFirstIndex);
reverse(array, newFirstIndex, toIndex);
reverse(array, fromIndex, toIndex);
}
/**
* Returns an array containing each value of {@code collection}, converted to a {@code int} value
* in the manner of {@link Number#intValue}.
*
*
Elements are copied from the argument collection as if by {@code collection.toArray()}.
* Calling this method is as thread-safe as calling that method.
*
* @param collection a collection of {@code Number} instances
* @return an array containing the same values as {@code collection}, in the same order, converted
* to primitives
* @throws NullPointerException if {@code collection} or any of its elements is null
* @since 1.0 (parameter was {@code Collection} before 12.0)
*/
public static int[] toArray(Collection extends Number> collection) {
if (collection instanceof IntArrayAsList) {
return ((IntArrayAsList) collection).toIntArray();
}
Object[] boxedArray = collection.toArray();
int len = boxedArray.length;
int[] array = new int[len];
for (int i = 0; i < len; i++) {
// checkNotNull for GWT (do not optimize)
array[i] = ((Number) checkNotNull(boxedArray[i])).intValue();
}
return array;
}
/**
* Returns a fixed-size list backed by the specified array, similar to {@link
* Arrays#asList(Object[])}. The list supports {@link List#set(int, Object)}, but any attempt to
* set a value to {@code null} will result in a {@link NullPointerException}.
*
* The returned list maintains the values, but not the identities, of {@code Integer} objects
* written to or read from it. For example, whether {@code list.get(0) == list.get(0)} is true for
* the returned list is unspecified.
*
*
The returned list is serializable.
*
*
Note: when possible, you should represent your data as an {@link ImmutableIntArray}
* instead, which has an {@link ImmutableIntArray#asList asList} view.
*
* @param backingArray the array to back the list
* @return a list view of the array
*/
public static List asList(int... backingArray) {
if (backingArray.length == 0) {
return Collections.emptyList();
}
return new IntArrayAsList(backingArray);
}
@GwtCompatible
private static class IntArrayAsList extends AbstractList
implements RandomAccess, Serializable {
final int[] array;
final int start;
final int end;
IntArrayAsList(int[] array) {
this(array, 0, array.length);
}
IntArrayAsList(int[] array, int start, int end) {
this.array = array;
this.start = start;
this.end = end;
}
@Override
public int size() {
return end - start;
}
@Override
public boolean isEmpty() {
return false;
}
@Override
public Integer get(int index) {
checkElementIndex(index, size());
return array[start + index];
}
@Override
public Spliterator.OfInt spliterator() {
return Spliterators.spliterator(array, start, end, 0);
}
@Override
public boolean contains(@CheckForNull Object target) {
// Overridden to prevent a ton of boxing
return (target instanceof Integer) && Ints.indexOf(array, (Integer) target, start, end) != -1;
}
@Override
public int indexOf(@CheckForNull Object target) {
// Overridden to prevent a ton of boxing
if (target instanceof Integer) {
int i = Ints.indexOf(array, (Integer) target, start, end);
if (i >= 0) {
return i - start;
}
}
return -1;
}
@Override
public int lastIndexOf(@CheckForNull Object target) {
// Overridden to prevent a ton of boxing
if (target instanceof Integer) {
int i = Ints.lastIndexOf(array, (Integer) target, start, end);
if (i >= 0) {
return i - start;
}
}
return -1;
}
@Override
public Integer set(int index, Integer element) {
checkElementIndex(index, size());
int oldValue = array[start + index];
// checkNotNull for GWT (do not optimize)
array[start + index] = checkNotNull(element);
return oldValue;
}
@Override
public List subList(int fromIndex, int toIndex) {
int size = size();
checkPositionIndexes(fromIndex, toIndex, size);
if (fromIndex == toIndex) {
return Collections.emptyList();
}
return new IntArrayAsList(array, start + fromIndex, start + toIndex);
}
@Override
public boolean equals(@CheckForNull Object object) {
if (object == this) {
return true;
}
if (object instanceof IntArrayAsList) {
IntArrayAsList that = (IntArrayAsList) object;
int size = size();
if (that.size() != size) {
return false;
}
for (int i = 0; i < size; i++) {
if (array[start + i] != that.array[that.start + i]) {
return false;
}
}
return true;
}
return super.equals(object);
}
@Override
public int hashCode() {
int result = 1;
for (int i = start; i < end; i++) {
result = 31 * result + Ints.hashCode(array[i]);
}
return result;
}
@Override
public String toString() {
StringBuilder builder = new StringBuilder(size() * 5);
builder.append('[').append(array[start]);
for (int i = start + 1; i < end; i++) {
builder.append(", ").append(array[i]);
}
return builder.append(']').toString();
}
int[] toIntArray() {
return Arrays.copyOfRange(array, start, end);
}
private static final long serialVersionUID = 0;
}
/**
* Parses the specified string as a signed decimal integer value. The ASCII character {@code '-'}
* ('\u002D'
) is recognized as the minus sign.
*
* Unlike {@link Integer#parseInt(String)}, this method returns {@code null} instead of
* throwing an exception if parsing fails. Additionally, this method only accepts ASCII digits,
* and returns {@code null} if non-ASCII digits are present in the string.
*
*
Note that strings prefixed with ASCII {@code '+'} are rejected, even under JDK 7, despite
* the change to {@link Integer#parseInt(String)} for that version.
*
* @param string the string representation of an integer value
* @return the integer value represented by {@code string}, or {@code null} if {@code string} has
* a length of zero or cannot be parsed as an integer value
* @throws NullPointerException if {@code string} is {@code null}
* @since 11.0
*/
@CheckForNull
public static Integer tryParse(String string) {
return tryParse(string, 10);
}
/**
* Parses the specified string as a signed integer value using the specified radix. The ASCII
* character {@code '-'} ('\u002D'
) is recognized as the minus sign.
*
*
Unlike {@link Integer#parseInt(String, int)}, this method returns {@code null} instead of
* throwing an exception if parsing fails. Additionally, this method only accepts ASCII digits,
* and returns {@code null} if non-ASCII digits are present in the string.
*
*
Note that strings prefixed with ASCII {@code '+'} are rejected, even under JDK 7, despite
* the change to {@link Integer#parseInt(String, int)} for that version.
*
* @param string the string representation of an integer value
* @param radix the radix to use when parsing
* @return the integer value represented by {@code string} using {@code radix}, or {@code null} if
* {@code string} has a length of zero or cannot be parsed as an integer value
* @throws IllegalArgumentException if {@code radix < Character.MIN_RADIX} or {@code radix >
* Character.MAX_RADIX}
* @throws NullPointerException if {@code string} is {@code null}
* @since 19.0
*/
@CheckForNull
public static Integer tryParse(String string, int radix) {
Long result = Longs.tryParse(string, radix);
if (result == null || result.longValue() != result.intValue()) {
return null;
} else {
return result.intValue();
}
}
}