All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.jackrabbit.guava.common.primitives.Ints Maven / Gradle / Ivy

/*
 * Copyright (C) 2008 The Guava Authors
 *
 * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
 * in compliance with the License. You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software distributed under the License
 * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
 * or implied. See the License for the specific language governing permissions and limitations under
 * the License.
 */

package com.google.common.primitives;

import static com.google.common.base.Preconditions.checkArgument;
import static com.google.common.base.Preconditions.checkElementIndex;
import static com.google.common.base.Preconditions.checkNotNull;
import static com.google.common.base.Preconditions.checkPositionIndexes;

import com.google.common.annotations.GwtCompatible;
import com.google.common.annotations.GwtIncompatible;
import com.google.common.base.Converter;
import java.io.Serializable;
import java.util.AbstractList;
import java.util.Arrays;
import java.util.Collection;
import java.util.Collections;
import java.util.Comparator;
import java.util.List;
import java.util.RandomAccess;
import java.util.Spliterator;
import java.util.Spliterators;
import javax.annotation.CheckForNull;

/**
 * Static utility methods pertaining to {@code int} primitives, that are not already found in either
 * {@link Integer} or {@link Arrays}.
 *
 * 

See the Guava User Guide article on primitive utilities. * * @author Kevin Bourrillion * @since 1.0 */ @GwtCompatible(emulated = true) @ElementTypesAreNonnullByDefault public final class Ints extends IntsMethodsForWeb { private Ints() {} /** * The number of bytes required to represent a primitive {@code int} value. * *

Java 8+ users: use {@link Integer#BYTES} instead. */ public static final int BYTES = Integer.SIZE / Byte.SIZE; /** * The largest power of two that can be represented as an {@code int}. * * @since 10.0 */ public static final int MAX_POWER_OF_TWO = 1 << (Integer.SIZE - 2); /** * Returns a hash code for {@code value}; equal to the result of invoking {@code ((Integer) * value).hashCode()}. * *

Java 8+ users: use {@link Integer#hashCode(int)} instead. * * @param value a primitive {@code int} value * @return a hash code for the value */ public static int hashCode(int value) { return value; } /** * Returns the {@code int} value that is equal to {@code value}, if possible. * * @param value any value in the range of the {@code int} type * @return the {@code int} value that equals {@code value} * @throws IllegalArgumentException if {@code value} is greater than {@link Integer#MAX_VALUE} or * less than {@link Integer#MIN_VALUE} */ public static int checkedCast(long value) { int result = (int) value; checkArgument(result == value, "Out of range: %s", value); return result; } /** * Returns the {@code int} nearest in value to {@code value}. * * @param value any {@code long} value * @return the same value cast to {@code int} if it is in the range of the {@code int} type, * {@link Integer#MAX_VALUE} if it is too large, or {@link Integer#MIN_VALUE} if it is too * small */ public static int saturatedCast(long value) { if (value > Integer.MAX_VALUE) { return Integer.MAX_VALUE; } if (value < Integer.MIN_VALUE) { return Integer.MIN_VALUE; } return (int) value; } /** * Compares the two specified {@code int} values. The sign of the value returned is the same as * that of {@code ((Integer) a).compareTo(b)}. * *

Java 7+ users: this method should be treated as deprecated; use the equivalent {@link * Integer#compare} method instead. * * @param a the first {@code int} to compare * @param b the second {@code int} to compare * @return a negative value if {@code a} is less than {@code b}; a positive value if {@code a} is * greater than {@code b}; or zero if they are equal */ public static int compare(int a, int b) { return (a < b) ? -1 : ((a > b) ? 1 : 0); } /** * Returns {@code true} if {@code target} is present as an element anywhere in {@code array}. * * @param array an array of {@code int} values, possibly empty * @param target a primitive {@code int} value * @return {@code true} if {@code array[i] == target} for some value of {@code i} */ public static boolean contains(int[] array, int target) { for (int value : array) { if (value == target) { return true; } } return false; } /** * Returns the index of the first appearance of the value {@code target} in {@code array}. * * @param array an array of {@code int} values, possibly empty * @param target a primitive {@code int} value * @return the least index {@code i} for which {@code array[i] == target}, or {@code -1} if no * such index exists. */ public static int indexOf(int[] array, int target) { return indexOf(array, target, 0, array.length); } // TODO(kevinb): consider making this public private static int indexOf(int[] array, int target, int start, int end) { for (int i = start; i < end; i++) { if (array[i] == target) { return i; } } return -1; } /** * Returns the start position of the first occurrence of the specified {@code target} within * {@code array}, or {@code -1} if there is no such occurrence. * *

More formally, returns the lowest index {@code i} such that {@code Arrays.copyOfRange(array, * i, i + target.length)} contains exactly the same elements as {@code target}. * * @param array the array to search for the sequence {@code target} * @param target the array to search for as a sub-sequence of {@code array} */ public static int indexOf(int[] array, int[] target) { checkNotNull(array, "array"); checkNotNull(target, "target"); if (target.length == 0) { return 0; } outer: for (int i = 0; i < array.length - target.length + 1; i++) { for (int j = 0; j < target.length; j++) { if (array[i + j] != target[j]) { continue outer; } } return i; } return -1; } /** * Returns the index of the last appearance of the value {@code target} in {@code array}. * * @param array an array of {@code int} values, possibly empty * @param target a primitive {@code int} value * @return the greatest index {@code i} for which {@code array[i] == target}, or {@code -1} if no * such index exists. */ public static int lastIndexOf(int[] array, int target) { return lastIndexOf(array, target, 0, array.length); } // TODO(kevinb): consider making this public private static int lastIndexOf(int[] array, int target, int start, int end) { for (int i = end - 1; i >= start; i--) { if (array[i] == target) { return i; } } return -1; } /** * Returns the least value present in {@code array}. * * @param array a nonempty array of {@code int} values * @return the value present in {@code array} that is less than or equal to every other value in * the array * @throws IllegalArgumentException if {@code array} is empty */ @GwtIncompatible( "Available in GWT! Annotation is to avoid conflict with GWT specialization of base class.") public static int min(int... array) { checkArgument(array.length > 0); int min = array[0]; for (int i = 1; i < array.length; i++) { if (array[i] < min) { min = array[i]; } } return min; } /** * Returns the greatest value present in {@code array}. * * @param array a nonempty array of {@code int} values * @return the value present in {@code array} that is greater than or equal to every other value * in the array * @throws IllegalArgumentException if {@code array} is empty */ @GwtIncompatible( "Available in GWT! Annotation is to avoid conflict with GWT specialization of base class.") public static int max(int... array) { checkArgument(array.length > 0); int max = array[0]; for (int i = 1; i < array.length; i++) { if (array[i] > max) { max = array[i]; } } return max; } /** * Returns the value nearest to {@code value} which is within the closed range {@code [min..max]}. * *

If {@code value} is within the range {@code [min..max]}, {@code value} is returned * unchanged. If {@code value} is less than {@code min}, {@code min} is returned, and if {@code * value} is greater than {@code max}, {@code max} is returned. * * @param value the {@code int} value to constrain * @param min the lower bound (inclusive) of the range to constrain {@code value} to * @param max the upper bound (inclusive) of the range to constrain {@code value} to * @throws IllegalArgumentException if {@code min > max} * @since 21.0 */ public static int constrainToRange(int value, int min, int max) { checkArgument(min <= max, "min (%s) must be less than or equal to max (%s)", min, max); return Math.min(Math.max(value, min), max); } /** * Returns the values from each provided array combined into a single array. For example, {@code * concat(new int[] {a, b}, new int[] {}, new int[] {c}} returns the array {@code {a, b, c}}. * * @param arrays zero or more {@code int} arrays * @return a single array containing all the values from the source arrays, in order */ public static int[] concat(int[]... arrays) { int length = 0; for (int[] array : arrays) { length += array.length; } int[] result = new int[length]; int pos = 0; for (int[] array : arrays) { System.arraycopy(array, 0, result, pos, array.length); pos += array.length; } return result; } /** * Returns a big-endian representation of {@code value} in a 4-element byte array; equivalent to * {@code ByteBuffer.allocate(4).putInt(value).array()}. For example, the input value {@code * 0x12131415} would yield the byte array {@code {0x12, 0x13, 0x14, 0x15}}. * *

If you need to convert and concatenate several values (possibly even of different types), * use a shared {@link java.nio.ByteBuffer} instance, or use {@link * com.google.common.io.ByteStreams#newDataOutput()} to get a growable buffer. */ public static byte[] toByteArray(int value) { return new byte[] { (byte) (value >> 24), (byte) (value >> 16), (byte) (value >> 8), (byte) value }; } /** * Returns the {@code int} value whose big-endian representation is stored in the first 4 bytes of * {@code bytes}; equivalent to {@code ByteBuffer.wrap(bytes).getInt()}. For example, the input * byte array {@code {0x12, 0x13, 0x14, 0x15, 0x33}} would yield the {@code int} value {@code * 0x12131415}. * *

Arguably, it's preferable to use {@link java.nio.ByteBuffer}; that library exposes much more * flexibility at little cost in readability. * * @throws IllegalArgumentException if {@code bytes} has fewer than 4 elements */ public static int fromByteArray(byte[] bytes) { checkArgument(bytes.length >= BYTES, "array too small: %s < %s", bytes.length, BYTES); return fromBytes(bytes[0], bytes[1], bytes[2], bytes[3]); } /** * Returns the {@code int} value whose byte representation is the given 4 bytes, in big-endian * order; equivalent to {@code Ints.fromByteArray(new byte[] {b1, b2, b3, b4})}. * * @since 7.0 */ public static int fromBytes(byte b1, byte b2, byte b3, byte b4) { return b1 << 24 | (b2 & 0xFF) << 16 | (b3 & 0xFF) << 8 | (b4 & 0xFF); } private static final class IntConverter extends Converter implements Serializable { static final Converter INSTANCE = new IntConverter(); @Override protected Integer doForward(String value) { return Integer.decode(value); } @Override protected String doBackward(Integer value) { return value.toString(); } @Override public String toString() { return "Ints.stringConverter()"; } private Object readResolve() { return INSTANCE; } private static final long serialVersionUID = 1; } /** * Returns a serializable converter object that converts between strings and integers using {@link * Integer#decode} and {@link Integer#toString()}. The returned converter throws {@link * NumberFormatException} if the input string is invalid. * *

Warning: please see {@link Integer#decode} to understand exactly how strings are * parsed. For example, the string {@code "0123"} is treated as octal and converted to the * value {@code 83}. * * @since 16.0 */ public static Converter stringConverter() { return IntConverter.INSTANCE; } /** * Returns an array containing the same values as {@code array}, but guaranteed to be of a * specified minimum length. If {@code array} already has a length of at least {@code minLength}, * it is returned directly. Otherwise, a new array of size {@code minLength + padding} is * returned, containing the values of {@code array}, and zeroes in the remaining places. * * @param array the source array * @param minLength the minimum length the returned array must guarantee * @param padding an extra amount to "grow" the array by if growth is necessary * @throws IllegalArgumentException if {@code minLength} or {@code padding} is negative * @return an array containing the values of {@code array}, with guaranteed minimum length {@code * minLength} */ public static int[] ensureCapacity(int[] array, int minLength, int padding) { checkArgument(minLength >= 0, "Invalid minLength: %s", minLength); checkArgument(padding >= 0, "Invalid padding: %s", padding); return (array.length < minLength) ? Arrays.copyOf(array, minLength + padding) : array; } /** * Returns a string containing the supplied {@code int} values separated by {@code separator}. For * example, {@code join("-", 1, 2, 3)} returns the string {@code "1-2-3"}. * * @param separator the text that should appear between consecutive values in the resulting string * (but not at the start or end) * @param array an array of {@code int} values, possibly empty */ public static String join(String separator, int... array) { checkNotNull(separator); if (array.length == 0) { return ""; } // For pre-sizing a builder, just get the right order of magnitude StringBuilder builder = new StringBuilder(array.length * 5); builder.append(array[0]); for (int i = 1; i < array.length; i++) { builder.append(separator).append(array[i]); } return builder.toString(); } /** * Returns a comparator that compares two {@code int} arrays lexicographically. That is, it * compares, using {@link #compare(int, int)}), the first pair of values that follow any common * prefix, or when one array is a prefix of the other, treats the shorter array as the lesser. For * example, {@code [] < [1] < [1, 2] < [2]}. * *

The returned comparator is inconsistent with {@link Object#equals(Object)} (since arrays * support only identity equality), but it is consistent with {@link Arrays#equals(int[], int[])}. * * @since 2.0 */ public static Comparator lexicographicalComparator() { return LexicographicalComparator.INSTANCE; } private enum LexicographicalComparator implements Comparator { INSTANCE; @Override public int compare(int[] left, int[] right) { int minLength = Math.min(left.length, right.length); for (int i = 0; i < minLength; i++) { int result = Ints.compare(left[i], right[i]); if (result != 0) { return result; } } return left.length - right.length; } @Override public String toString() { return "Ints.lexicographicalComparator()"; } } /** * Sorts the elements of {@code array} in descending order. * * @since 23.1 */ public static void sortDescending(int[] array) { checkNotNull(array); sortDescending(array, 0, array.length); } /** * Sorts the elements of {@code array} between {@code fromIndex} inclusive and {@code toIndex} * exclusive in descending order. * * @since 23.1 */ public static void sortDescending(int[] array, int fromIndex, int toIndex) { checkNotNull(array); checkPositionIndexes(fromIndex, toIndex, array.length); Arrays.sort(array, fromIndex, toIndex); reverse(array, fromIndex, toIndex); } /** * Reverses the elements of {@code array}. This is equivalent to {@code * Collections.reverse(Ints.asList(array))}, but is likely to be more efficient. * * @since 23.1 */ public static void reverse(int[] array) { checkNotNull(array); reverse(array, 0, array.length); } /** * Reverses the elements of {@code array} between {@code fromIndex} inclusive and {@code toIndex} * exclusive. This is equivalent to {@code * Collections.reverse(Ints.asList(array).subList(fromIndex, toIndex))}, but is likely to be more * efficient. * * @throws IndexOutOfBoundsException if {@code fromIndex < 0}, {@code toIndex > array.length}, or * {@code toIndex > fromIndex} * @since 23.1 */ public static void reverse(int[] array, int fromIndex, int toIndex) { checkNotNull(array); checkPositionIndexes(fromIndex, toIndex, array.length); for (int i = fromIndex, j = toIndex - 1; i < j; i++, j--) { int tmp = array[i]; array[i] = array[j]; array[j] = tmp; } } /** * Performs a right rotation of {@code array} of "distance" places, so that the first element is * moved to index "distance", and the element at index {@code i} ends up at index {@code (distance * + i) mod array.length}. This is equivalent to {@code Collections.rotate(Ints.asList(array), * distance)}, but is considerably faster and avoids allocation and garbage collection. * *

The provided "distance" may be negative, which will rotate left. * * @since 32.0.0 */ public static void rotate(int[] array, int distance) { rotate(array, distance, 0, array.length); } /** * Performs a right rotation of {@code array} between {@code fromIndex} inclusive and {@code * toIndex} exclusive. This is equivalent to {@code * Collections.rotate(Ints.asList(array).subList(fromIndex, toIndex), distance)}, but is * considerably faster and avoids allocations and garbage collection. * *

The provided "distance" may be negative, which will rotate left. * * @throws IndexOutOfBoundsException if {@code fromIndex < 0}, {@code toIndex > array.length}, or * {@code toIndex > fromIndex} * @since 32.0.0 */ public static void rotate(int[] array, int distance, int fromIndex, int toIndex) { // There are several well-known algorithms for rotating part of an array (or, equivalently, // exchanging two blocks of memory). This classic text by Gries and Mills mentions several: // https://ecommons.cornell.edu/bitstream/handle/1813/6292/81-452.pdf. // (1) "Reversal", the one we have here. // (2) "Dolphin". If we're rotating an array a of size n by a distance of d, then element a[0] // ends up at a[d], which in turn ends up at a[2d], and so on until we get back to a[0]. // (All indices taken mod n.) If d and n are mutually prime, all elements will have been // moved at that point. Otherwise, we can rotate the cycle a[1], a[1 + d], a[1 + 2d], etc, // then a[2] etc, and so on until we have rotated all elements. There are gcd(d, n) cycles // in all. // (3) "Successive". We can consider that we are exchanging a block of size d (a[0..d-1]) with a // block of size n-d (a[d..n-1]), where in general these blocks have different sizes. If we // imagine a line separating the first block from the second, we can proceed by exchanging // the smaller of these blocks with the far end of the other one. That leaves us with a // smaller version of the same problem. // Say we are rotating abcdefgh by 5. We start with abcde|fgh. The smaller block is [fgh]: // [abc]de|[fgh] -> [fgh]de|[abc]. Now [fgh] is in the right place, but we need to swap [de] // with [abc]: fgh[de]|a[bc] -> fgh[bc]|a[de]. Now we need to swap [a] with [bc]: // fgh[b]c|[a]de -> fgh[a]c|[b]de. Finally we need to swap [c] with [b]: // fgha[c]|[b]de -> fgha[b]|[c]de. Because these two blocks are the same size, we are done. // The Dolphin algorithm is attractive because it does the fewest array reads and writes: each // array slot is read and written exactly once. However, it can have very poor memory locality: // benchmarking shows it can take 7 times longer than the other two in some cases. The other two // do n swaps, minus a delta (0 or 2 for Reversal, gcd(d, n) for Successive), so that's about // twice as many reads and writes. But benchmarking shows that they usually perform better than // Dolphin. Reversal is about as good as Successive on average, and it is much simpler, // especially since we already have a `reverse` method. checkNotNull(array); checkPositionIndexes(fromIndex, toIndex, array.length); if (array.length <= 1) { return; } int length = toIndex - fromIndex; // Obtain m = (-distance mod length), a non-negative value less than "length". This is how many // places left to rotate. int m = -distance % length; m = (m < 0) ? m + length : m; // The current index of what will become the first element of the rotated section. int newFirstIndex = m + fromIndex; if (newFirstIndex == fromIndex) { return; } reverse(array, fromIndex, newFirstIndex); reverse(array, newFirstIndex, toIndex); reverse(array, fromIndex, toIndex); } /** * Returns an array containing each value of {@code collection}, converted to a {@code int} value * in the manner of {@link Number#intValue}. * *

Elements are copied from the argument collection as if by {@code collection.toArray()}. * Calling this method is as thread-safe as calling that method. * * @param collection a collection of {@code Number} instances * @return an array containing the same values as {@code collection}, in the same order, converted * to primitives * @throws NullPointerException if {@code collection} or any of its elements is null * @since 1.0 (parameter was {@code Collection} before 12.0) */ public static int[] toArray(Collection collection) { if (collection instanceof IntArrayAsList) { return ((IntArrayAsList) collection).toIntArray(); } Object[] boxedArray = collection.toArray(); int len = boxedArray.length; int[] array = new int[len]; for (int i = 0; i < len; i++) { // checkNotNull for GWT (do not optimize) array[i] = ((Number) checkNotNull(boxedArray[i])).intValue(); } return array; } /** * Returns a fixed-size list backed by the specified array, similar to {@link * Arrays#asList(Object[])}. The list supports {@link List#set(int, Object)}, but any attempt to * set a value to {@code null} will result in a {@link NullPointerException}. * *

The returned list maintains the values, but not the identities, of {@code Integer} objects * written to or read from it. For example, whether {@code list.get(0) == list.get(0)} is true for * the returned list is unspecified. * *

The returned list is serializable. * *

Note: when possible, you should represent your data as an {@link ImmutableIntArray} * instead, which has an {@link ImmutableIntArray#asList asList} view. * * @param backingArray the array to back the list * @return a list view of the array */ public static List asList(int... backingArray) { if (backingArray.length == 0) { return Collections.emptyList(); } return new IntArrayAsList(backingArray); } @GwtCompatible private static class IntArrayAsList extends AbstractList implements RandomAccess, Serializable { final int[] array; final int start; final int end; IntArrayAsList(int[] array) { this(array, 0, array.length); } IntArrayAsList(int[] array, int start, int end) { this.array = array; this.start = start; this.end = end; } @Override public int size() { return end - start; } @Override public boolean isEmpty() { return false; } @Override public Integer get(int index) { checkElementIndex(index, size()); return array[start + index]; } @Override public Spliterator.OfInt spliterator() { return Spliterators.spliterator(array, start, end, 0); } @Override public boolean contains(@CheckForNull Object target) { // Overridden to prevent a ton of boxing return (target instanceof Integer) && Ints.indexOf(array, (Integer) target, start, end) != -1; } @Override public int indexOf(@CheckForNull Object target) { // Overridden to prevent a ton of boxing if (target instanceof Integer) { int i = Ints.indexOf(array, (Integer) target, start, end); if (i >= 0) { return i - start; } } return -1; } @Override public int lastIndexOf(@CheckForNull Object target) { // Overridden to prevent a ton of boxing if (target instanceof Integer) { int i = Ints.lastIndexOf(array, (Integer) target, start, end); if (i >= 0) { return i - start; } } return -1; } @Override public Integer set(int index, Integer element) { checkElementIndex(index, size()); int oldValue = array[start + index]; // checkNotNull for GWT (do not optimize) array[start + index] = checkNotNull(element); return oldValue; } @Override public List subList(int fromIndex, int toIndex) { int size = size(); checkPositionIndexes(fromIndex, toIndex, size); if (fromIndex == toIndex) { return Collections.emptyList(); } return new IntArrayAsList(array, start + fromIndex, start + toIndex); } @Override public boolean equals(@CheckForNull Object object) { if (object == this) { return true; } if (object instanceof IntArrayAsList) { IntArrayAsList that = (IntArrayAsList) object; int size = size(); if (that.size() != size) { return false; } for (int i = 0; i < size; i++) { if (array[start + i] != that.array[that.start + i]) { return false; } } return true; } return super.equals(object); } @Override public int hashCode() { int result = 1; for (int i = start; i < end; i++) { result = 31 * result + Ints.hashCode(array[i]); } return result; } @Override public String toString() { StringBuilder builder = new StringBuilder(size() * 5); builder.append('[').append(array[start]); for (int i = start + 1; i < end; i++) { builder.append(", ").append(array[i]); } return builder.append(']').toString(); } int[] toIntArray() { return Arrays.copyOfRange(array, start, end); } private static final long serialVersionUID = 0; } /** * Parses the specified string as a signed decimal integer value. The ASCII character {@code '-'} * ('\u002D') is recognized as the minus sign. * *

Unlike {@link Integer#parseInt(String)}, this method returns {@code null} instead of * throwing an exception if parsing fails. Additionally, this method only accepts ASCII digits, * and returns {@code null} if non-ASCII digits are present in the string. * *

Note that strings prefixed with ASCII {@code '+'} are rejected, even under JDK 7, despite * the change to {@link Integer#parseInt(String)} for that version. * * @param string the string representation of an integer value * @return the integer value represented by {@code string}, or {@code null} if {@code string} has * a length of zero or cannot be parsed as an integer value * @throws NullPointerException if {@code string} is {@code null} * @since 11.0 */ @CheckForNull public static Integer tryParse(String string) { return tryParse(string, 10); } /** * Parses the specified string as a signed integer value using the specified radix. The ASCII * character {@code '-'} ('\u002D') is recognized as the minus sign. * *

Unlike {@link Integer#parseInt(String, int)}, this method returns {@code null} instead of * throwing an exception if parsing fails. Additionally, this method only accepts ASCII digits, * and returns {@code null} if non-ASCII digits are present in the string. * *

Note that strings prefixed with ASCII {@code '+'} are rejected, even under JDK 7, despite * the change to {@link Integer#parseInt(String, int)} for that version. * * @param string the string representation of an integer value * @param radix the radix to use when parsing * @return the integer value represented by {@code string} using {@code radix}, or {@code null} if * {@code string} has a length of zero or cannot be parsed as an integer value * @throws IllegalArgumentException if {@code radix < Character.MIN_RADIX} or {@code radix > * Character.MAX_RADIX} * @throws NullPointerException if {@code string} is {@code null} * @since 19.0 */ @CheckForNull public static Integer tryParse(String string, int radix) { Long result = Longs.tryParse(string, radix); if (result == null || result.longValue() != result.intValue()) { return null; } else { return result.intValue(); } } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy