Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
/**
* Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements. See the NOTICE
* file distributed with this work for additional information regarding copyright ownership. The ASF licenses this file
* to You under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the
* License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
* an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
* specific language governing permissions and limitations under the License.
*/
package org.apache.kafka.clients.producer.internals;
import java.nio.ByteBuffer;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.Iterator;
import java.util.LinkedHashMap;
import java.util.List;
import java.util.Map;
import org.apache.kafka.clients.ClientRequest;
import org.apache.kafka.clients.ClientResponse;
import org.apache.kafka.clients.KafkaClient;
import org.apache.kafka.clients.Metadata;
import org.apache.kafka.clients.RequestCompletionHandler;
import org.apache.kafka.common.Cluster;
import org.apache.kafka.common.Node;
import org.apache.kafka.common.TopicPartition;
import org.apache.kafka.common.errors.InvalidMetadataException;
import org.apache.kafka.common.errors.RetriableException;
import org.apache.kafka.common.errors.TopicAuthorizationException;
import org.apache.kafka.common.metrics.Measurable;
import org.apache.kafka.common.metrics.MetricConfig;
import org.apache.kafka.common.MetricName;
import org.apache.kafka.common.metrics.Metrics;
import org.apache.kafka.common.metrics.Sensor;
import org.apache.kafka.common.metrics.stats.Avg;
import org.apache.kafka.common.metrics.stats.Max;
import org.apache.kafka.common.metrics.stats.Rate;
import org.apache.kafka.common.protocol.ApiKeys;
import org.apache.kafka.common.protocol.Errors;
import org.apache.kafka.common.requests.ProduceRequest;
import org.apache.kafka.common.requests.ProduceResponse;
import org.apache.kafka.common.requests.RequestSend;
import org.apache.kafka.common.utils.Time;
import org.apache.kafka.common.utils.Utils;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
/**
* The background thread that handles the sending of produce requests to the Kafka cluster. This thread makes metadata
* requests to renew its view of the cluster and then sends produce requests to the appropriate nodes.
*/
public class Sender implements Runnable {
private static final Logger log = LoggerFactory.getLogger(Sender.class);
/* the state of each nodes connection */
private final KafkaClient client;
/* the record accumulator that batches records */
private final RecordAccumulator accumulator;
/* the metadata for the client */
private final Metadata metadata;
/* the maximum request size to attempt to send to the server */
private final int maxRequestSize;
/* the number of acknowledgements to request from the server */
private final short acks;
/* the number of times to retry a failed request before giving up */
private final int retries;
/* the clock instance used for getting the time */
private final Time time;
/* true while the sender thread is still running */
private volatile boolean running;
/* true when the caller wants to ignore all unsent/inflight messages and force close. */
private volatile boolean forceClose;
/* metrics */
private final SenderMetrics sensors;
/* param clientId of the client */
private String clientId;
/* the max time to wait for the server to respond to the request*/
private final int requestTimeout;
public Sender(KafkaClient client,
Metadata metadata,
RecordAccumulator accumulator,
int maxRequestSize,
short acks,
int retries,
Metrics metrics,
Time time,
String clientId,
int requestTimeout) {
this.client = client;
this.accumulator = accumulator;
this.metadata = metadata;
this.maxRequestSize = maxRequestSize;
this.running = true;
this.acks = acks;
this.retries = retries;
this.time = time;
this.clientId = clientId;
this.sensors = new SenderMetrics(metrics);
this.requestTimeout = requestTimeout;
}
/**
* The main run loop for the sender thread
*/
public void run() {
log.debug("Starting Kafka producer I/O thread.");
// main loop, runs until close is called
while (running) {
try {
run(time.milliseconds());
} catch (Exception e) {
log.error("Uncaught error in kafka producer I/O thread: ", e);
}
}
log.debug("Beginning shutdown of Kafka producer I/O thread, sending remaining records.");
// okay we stopped accepting requests but there may still be
// requests in the accumulator or waiting for acknowledgment,
// wait until these are completed.
while (!forceClose && (this.accumulator.hasUnsent() || this.client.inFlightRequestCount() > 0)) {
try {
run(time.milliseconds());
} catch (Exception e) {
log.error("Uncaught error in kafka producer I/O thread: ", e);
}
}
if (forceClose) {
// We need to fail all the incomplete batches and wake up the threads waiting on
// the futures.
this.accumulator.abortIncompleteBatches();
}
try {
this.client.close();
} catch (Exception e) {
log.error("Failed to close network client", e);
}
log.debug("Shutdown of Kafka producer I/O thread has completed.");
}
/**
* Run a single iteration of sending
*
* @param now
* The current POSIX time in milliseconds
*/
public void run(long now) {
Cluster cluster = metadata.fetch();
// get the list of partitions with data ready to send
RecordAccumulator.ReadyCheckResult result = this.accumulator.ready(cluster, now);
// if there are any partitions whose leaders are not known yet, force metadata update
if (result.unknownLeadersExist)
this.metadata.requestUpdate();
// remove any nodes we aren't ready to send to
Iterator iter = result.readyNodes.iterator();
long notReadyTimeout = Long.MAX_VALUE;
while (iter.hasNext()) {
Node node = iter.next();
if (!this.client.ready(node, now)) {
iter.remove();
notReadyTimeout = Math.min(notReadyTimeout, this.client.connectionDelay(node, now));
}
}
// create produce requests
Map> batches = this.accumulator.drain(cluster,
result.readyNodes,
this.maxRequestSize,
now);
List expiredBatches = this.accumulator.abortExpiredBatches(this.requestTimeout, cluster, now);
// update sensors
for (RecordBatch expiredBatch : expiredBatches)
this.sensors.recordErrors(expiredBatch.topicPartition.topic(), expiredBatch.recordCount);
sensors.updateProduceRequestMetrics(batches);
List requests = createProduceRequests(batches, now);
// If we have any nodes that are ready to send + have sendable data, poll with 0 timeout so this can immediately
// loop and try sending more data. Otherwise, the timeout is determined by nodes that have partitions with data
// that isn't yet sendable (e.g. lingering, backing off). Note that this specifically does not include nodes
// with sendable data that aren't ready to send since they would cause busy looping.
long pollTimeout = Math.min(result.nextReadyCheckDelayMs, notReadyTimeout);
if (result.readyNodes.size() > 0) {
log.trace("Nodes with data ready to send: {}", result.readyNodes);
log.trace("Created {} produce requests: {}", requests.size(), requests);
pollTimeout = 0;
}
for (ClientRequest request : requests)
client.send(request, now);
// if some partitions are already ready to be sent, the select time would be 0;
// otherwise if some partition already has some data accumulated but not ready yet,
// the select time will be the time difference between now and its linger expiry time;
// otherwise the select time will be the time difference between now and the metadata expiry time;
this.client.poll(pollTimeout, now);
}
/**
* Start closing the sender (won't actually complete until all data is sent out)
*/
public void initiateClose() {
this.running = false;
this.accumulator.close();
this.wakeup();
}
/**
* Closes the sender without sending out any pending messages.
*/
public void forceClose() {
this.forceClose = true;
initiateClose();
}
/**
* Handle a produce response
*/
private void handleProduceResponse(ClientResponse response, Map batches, long now) {
int correlationId = response.request().request().header().correlationId();
if (response.wasDisconnected()) {
log.trace("Cancelled request {} due to node {} being disconnected", response, response.request()
.request()
.destination());
for (RecordBatch batch : batches.values())
completeBatch(batch, Errors.NETWORK_EXCEPTION, -1L, correlationId, now);
} else {
log.trace("Received produce response from node {} with correlation id {}",
response.request().request().destination(),
correlationId);
// if we have a response, parse it
if (response.hasResponse()) {
ProduceResponse produceResponse = new ProduceResponse(response.responseBody());
for (Map.Entry entry : produceResponse.responses()
.entrySet()) {
TopicPartition tp = entry.getKey();
ProduceResponse.PartitionResponse partResp = entry.getValue();
Errors error = Errors.forCode(partResp.errorCode);
RecordBatch batch = batches.get(tp);
completeBatch(batch, error, partResp.baseOffset, correlationId, now);
}
this.sensors.recordLatency(response.request().request().destination(), response.requestLatencyMs());
this.sensors.recordThrottleTime(response.request().request().destination(),
produceResponse.getThrottleTime());
} else {
// this is the acks = 0 case, just complete all requests
for (RecordBatch batch : batches.values())
completeBatch(batch, Errors.NONE, -1L, correlationId, now);
}
}
}
/**
* Complete or retry the given batch of records.
*
* @param batch The record batch
* @param error The error (or null if none)
* @param baseOffset The base offset assigned to the records if successful
* @param correlationId The correlation id for the request
* @param now The current POSIX time stamp in milliseconds
*/
private void completeBatch(RecordBatch batch, Errors error, long baseOffset, long correlationId, long now) {
if (error != Errors.NONE && canRetry(batch, error)) {
// retry
log.warn("Got error produce response with correlation id {} on topic-partition {}, retrying ({} attempts left). Error: {}",
correlationId,
batch.topicPartition,
this.retries - batch.attempts - 1,
error);
this.accumulator.reenqueue(batch, now);
this.sensors.recordRetries(batch.topicPartition.topic(), batch.recordCount);
} else {
RuntimeException exception;
if (error == Errors.TOPIC_AUTHORIZATION_FAILED)
exception = new TopicAuthorizationException(batch.topicPartition.topic());
else
exception = error.exception();
// tell the user the result of their request
batch.done(baseOffset, exception);
this.accumulator.deallocate(batch);
if (error != Errors.NONE)
this.sensors.recordErrors(batch.topicPartition.topic(), batch.recordCount);
}
if (error.exception() instanceof InvalidMetadataException)
metadata.requestUpdate();
}
/**
* We can retry a send if the error is transient and the number of attempts taken is fewer than the maximum allowed
*/
private boolean canRetry(RecordBatch batch, Errors error) {
return batch.attempts < this.retries && error.exception() instanceof RetriableException;
}
/**
* Transfer the record batches into a list of produce requests on a per-node basis
*/
private List createProduceRequests(Map> collated, long now) {
List requests = new ArrayList(collated.size());
for (Map.Entry> entry : collated.entrySet())
requests.add(produceRequest(now, entry.getKey(), acks, requestTimeout, entry.getValue()));
return requests;
}
/**
* Create a produce request from the given record batches
*/
private ClientRequest produceRequest(long now, int destination, short acks, int timeout, List batches) {
Map produceRecordsByPartition = new HashMap(batches.size());
final Map recordsByPartition = new HashMap(batches.size());
for (RecordBatch batch : batches) {
TopicPartition tp = batch.topicPartition;
produceRecordsByPartition.put(tp, batch.records.buffer());
recordsByPartition.put(tp, batch);
}
ProduceRequest request = new ProduceRequest(acks, timeout, produceRecordsByPartition);
RequestSend send = new RequestSend(Integer.toString(destination),
this.client.nextRequestHeader(ApiKeys.PRODUCE),
request.toStruct());
RequestCompletionHandler callback = new RequestCompletionHandler() {
public void onComplete(ClientResponse response) {
handleProduceResponse(response, recordsByPartition, time.milliseconds());
}
};
return new ClientRequest(now, acks != 0, send, callback);
}
/**
* Wake up the selector associated with this send thread
*/
public void wakeup() {
this.client.wakeup();
}
/**
* A collection of sensors for the sender
*/
private class SenderMetrics {
private final Metrics metrics;
public final Sensor retrySensor;
public final Sensor errorSensor;
public final Sensor queueTimeSensor;
public final Sensor requestTimeSensor;
public final Sensor recordsPerRequestSensor;
public final Sensor batchSizeSensor;
public final Sensor compressionRateSensor;
public final Sensor maxRecordSizeSensor;
public final Sensor produceThrottleTimeSensor;
public SenderMetrics(Metrics metrics) {
this.metrics = metrics;
Map metricTags = new LinkedHashMap();
metricTags.put("client-id", clientId);
String metricGrpName = "producer-metrics";
this.batchSizeSensor = metrics.sensor("batch-size");
MetricName m = new MetricName("batch-size-avg", metricGrpName, "The average number of bytes sent per partition per-request.", metricTags);
this.batchSizeSensor.add(m, new Avg());
m = new MetricName("batch-size-max", metricGrpName, "The max number of bytes sent per partition per-request.", metricTags);
this.batchSizeSensor.add(m, new Max());
this.compressionRateSensor = metrics.sensor("compression-rate");
m = new MetricName("compression-rate-avg", metricGrpName, "The average compression rate of record batches.", metricTags);
this.compressionRateSensor.add(m, new Avg());
this.queueTimeSensor = metrics.sensor("queue-time");
m = new MetricName("record-queue-time-avg", metricGrpName, "The average time in ms record batches spent in the record accumulator.", metricTags);
this.queueTimeSensor.add(m, new Avg());
m = new MetricName("record-queue-time-max", metricGrpName, "The maximum time in ms record batches spent in the record accumulator.", metricTags);
this.queueTimeSensor.add(m, new Max());
this.requestTimeSensor = metrics.sensor("request-time");
m = new MetricName("request-latency-avg", metricGrpName, "The average request latency in ms", metricTags);
this.requestTimeSensor.add(m, new Avg());
m = new MetricName("request-latency-max", metricGrpName, "The maximum request latency in ms", metricTags);
this.requestTimeSensor.add(m, new Max());
this.produceThrottleTimeSensor = metrics.sensor("produce-throttle-time");
m = new MetricName("produce-throttle-time-avg", metricGrpName, "The average throttle time in ms", metricTags);
this.produceThrottleTimeSensor.add(m, new Avg());
m = new MetricName("produce-throttle-time-max", metricGrpName, "The maximum throttle time in ms", metricTags);
this.produceThrottleTimeSensor.add(m, new Max());
this.recordsPerRequestSensor = metrics.sensor("records-per-request");
m = new MetricName("record-send-rate", metricGrpName, "The average number of records sent per second.", metricTags);
this.recordsPerRequestSensor.add(m, new Rate());
m = new MetricName("records-per-request-avg", metricGrpName, "The average number of records per request.", metricTags);
this.recordsPerRequestSensor.add(m, new Avg());
this.retrySensor = metrics.sensor("record-retries");
m = new MetricName("record-retry-rate", metricGrpName, "The average per-second number of retried record sends", metricTags);
this.retrySensor.add(m, new Rate());
this.errorSensor = metrics.sensor("errors");
m = new MetricName("record-error-rate", metricGrpName, "The average per-second number of record sends that resulted in errors", metricTags);
this.errorSensor.add(m, new Rate());
this.maxRecordSizeSensor = metrics.sensor("record-size-max");
m = new MetricName("record-size-max", metricGrpName, "The maximum record size", metricTags);
this.maxRecordSizeSensor.add(m, new Max());
m = new MetricName("record-size-avg", metricGrpName, "The average record size", metricTags);
this.maxRecordSizeSensor.add(m, new Avg());
m = new MetricName("requests-in-flight", metricGrpName, "The current number of in-flight requests awaiting a response.", metricTags);
this.metrics.addMetric(m, new Measurable() {
public double measure(MetricConfig config, long now) {
return client.inFlightRequestCount();
}
});
m = new MetricName("metadata-age", metricGrpName, "The age in seconds of the current producer metadata being used.", metricTags);
metrics.addMetric(m, new Measurable() {
public double measure(MetricConfig config, long now) {
return (now - metadata.lastSuccessfulUpdate()) / 1000.0;
}
});
}
public void maybeRegisterTopicMetrics(String topic) {
// if one sensor of the metrics has been registered for the topic,
// then all other sensors should have been registered; and vice versa
String topicRecordsCountName = "topic." + topic + ".records-per-batch";
Sensor topicRecordCount = this.metrics.getSensor(topicRecordsCountName);
if (topicRecordCount == null) {
Map metricTags = new LinkedHashMap();
metricTags.put("client-id", clientId);
metricTags.put("topic", topic);
String metricGrpName = "producer-topic-metrics";
topicRecordCount = this.metrics.sensor(topicRecordsCountName);
MetricName m = new MetricName("record-send-rate", metricGrpName , metricTags);
topicRecordCount.add(m, new Rate());
String topicByteRateName = "topic." + topic + ".bytes";
Sensor topicByteRate = this.metrics.sensor(topicByteRateName);
m = new MetricName("byte-rate", metricGrpName , metricTags);
topicByteRate.add(m, new Rate());
String topicCompressionRateName = "topic." + topic + ".compression-rate";
Sensor topicCompressionRate = this.metrics.sensor(topicCompressionRateName);
m = new MetricName("compression-rate", metricGrpName , metricTags);
topicCompressionRate.add(m, new Avg());
String topicRetryName = "topic." + topic + ".record-retries";
Sensor topicRetrySensor = this.metrics.sensor(topicRetryName);
m = new MetricName("record-retry-rate", metricGrpName , metricTags);
topicRetrySensor.add(m, new Rate());
String topicErrorName = "topic." + topic + ".record-errors";
Sensor topicErrorSensor = this.metrics.sensor(topicErrorName);
m = new MetricName("record-error-rate", metricGrpName , metricTags);
topicErrorSensor.add(m, new Rate());
}
}
public void updateProduceRequestMetrics(Map> batches) {
long now = time.milliseconds();
for (List nodeBatch : batches.values()) {
int records = 0;
for (RecordBatch batch : nodeBatch) {
// register all per-topic metrics at once
String topic = batch.topicPartition.topic();
maybeRegisterTopicMetrics(topic);
// per-topic record send rate
String topicRecordsCountName = "topic." + topic + ".records-per-batch";
Sensor topicRecordCount = Utils.notNull(this.metrics.getSensor(topicRecordsCountName));
topicRecordCount.record(batch.recordCount);
// per-topic bytes send rate
String topicByteRateName = "topic." + topic + ".bytes";
Sensor topicByteRate = Utils.notNull(this.metrics.getSensor(topicByteRateName));
topicByteRate.record(batch.records.sizeInBytes());
// per-topic compression rate
String topicCompressionRateName = "topic." + topic + ".compression-rate";
Sensor topicCompressionRate = Utils.notNull(this.metrics.getSensor(topicCompressionRateName));
topicCompressionRate.record(batch.records.compressionRate());
// global metrics
this.batchSizeSensor.record(batch.records.sizeInBytes(), now);
this.queueTimeSensor.record(batch.drainedMs - batch.createdMs, now);
this.compressionRateSensor.record(batch.records.compressionRate());
this.maxRecordSizeSensor.record(batch.maxRecordSize, now);
records += batch.recordCount;
}
this.recordsPerRequestSensor.record(records, now);
}
}
public void recordRetries(String topic, int count) {
long now = time.milliseconds();
this.retrySensor.record(count, now);
String topicRetryName = "topic." + topic + ".record-retries";
Sensor topicRetrySensor = this.metrics.getSensor(topicRetryName);
if (topicRetrySensor != null)
topicRetrySensor.record(count, now);
}
public void recordErrors(String topic, int count) {
long now = time.milliseconds();
this.errorSensor.record(count, now);
String topicErrorName = "topic." + topic + ".record-errors";
Sensor topicErrorSensor = this.metrics.getSensor(topicErrorName);
if (topicErrorSensor != null)
topicErrorSensor.record(count, now);
}
public void recordLatency(String node, long latency) {
long now = time.milliseconds();
this.requestTimeSensor.record(latency, now);
if (!node.isEmpty()) {
String nodeTimeName = "node-" + node + ".latency";
Sensor nodeRequestTime = this.metrics.getSensor(nodeTimeName);
if (nodeRequestTime != null)
nodeRequestTime.record(latency, now);
}
}
public void recordThrottleTime(String node, long throttleTimeMs) {
this.produceThrottleTimeSensor.record(throttleTimeMs, time.milliseconds());
}
}
}