org.apache.kafka.streams.kstream.internals.KGroupedTableImpl Maven / Gradle / Ivy
/**
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.kafka.streams.kstream.internals;
import org.apache.kafka.common.serialization.Deserializer;
import org.apache.kafka.common.serialization.Serde;
import org.apache.kafka.common.serialization.Serdes;
import org.apache.kafka.common.serialization.Serializer;
import org.apache.kafka.streams.kstream.Aggregator;
import org.apache.kafka.streams.kstream.Initializer;
import org.apache.kafka.streams.kstream.KGroupedTable;
import org.apache.kafka.streams.kstream.KStreamBuilder;
import org.apache.kafka.streams.kstream.KTable;
import org.apache.kafka.streams.kstream.Reducer;
import org.apache.kafka.streams.processor.ProcessorSupplier;
import org.apache.kafka.streams.processor.StateStoreSupplier;
import org.apache.kafka.streams.state.Stores;
import java.util.Collections;
/**
* The implementation class of {@link KGroupedTable}.
*
* @param the key type
* @param the value type
*/
public class KGroupedTableImpl extends AbstractStream implements KGroupedTable {
private static final String AGGREGATE_NAME = "KTABLE-AGGREGATE-";
private static final String REDUCE_NAME = "KTABLE-REDUCE-";
private static final String REPARTITION_TOPIC_SUFFIX = "-repartition";
protected final Serde keySerde;
protected final Serde valSerde;
public KGroupedTableImpl(KStreamBuilder topology,
String name,
String sourceName,
Serde keySerde,
Serde valSerde) {
super(topology, name, Collections.singleton(sourceName));
this.keySerde = keySerde;
this.valSerde = valSerde;
}
@Override
public KTable aggregate(Initializer initializer,
Aggregator adder,
Aggregator subtractor,
Serde aggValueSerde,
String name) {
ProcessorSupplier> aggregateSupplier = new KTableAggregate<>(name, initializer, adder, subtractor);
return doAggregate(aggregateSupplier, aggValueSerde, AGGREGATE_NAME, name);
}
@Override
public KTable aggregate(Initializer initializer,
Aggregator adder,
Aggregator substractor,
String name) {
return aggregate(initializer, adder, substractor, null, name);
}
private KTable doAggregate(ProcessorSupplier> aggregateSupplier,
Serde aggValueSerde,
String functionName,
String name) {
String sinkName = topology.newName(KStreamImpl.SINK_NAME);
String sourceName = topology.newName(KStreamImpl.SOURCE_NAME);
String funcName = topology.newName(functionName);
String topic = name + REPARTITION_TOPIC_SUFFIX;
Serializer keySerializer = keySerde == null ? null : keySerde.serializer();
Deserializer keyDeserializer = keySerde == null ? null : keySerde.deserializer();
Serializer valueSerializer = valSerde == null ? null : valSerde.serializer();
Deserializer valueDeserializer = valSerde == null ? null : valSerde.deserializer();
ChangedSerializer changedValueSerializer = new ChangedSerializer<>(valueSerializer);
ChangedDeserializer changedValueDeserializer = new ChangedDeserializer<>(valueDeserializer);
StateStoreSupplier aggregateStore = Stores.create(name)
.withKeys(keySerde)
.withValues(aggValueSerde)
.persistent()
.build();
// send the aggregate key-value pairs to the intermediate topic for partitioning
topology.addInternalTopic(topic);
topology.addSink(sinkName, topic, keySerializer, changedValueSerializer, this.name);
// read the intermediate topic
topology.addSource(sourceName, keyDeserializer, changedValueDeserializer, topic);
// aggregate the values with the aggregator and local store
topology.addProcessor(funcName, aggregateSupplier, sourceName);
topology.addStateStore(aggregateStore, funcName);
// return the KTable representation with the intermediate topic as the sources
return new KTableImpl<>(topology, funcName, aggregateSupplier, Collections.singleton(sourceName));
}
@Override
public KTable reduce(Reducer adder,
Reducer subtractor,
String name) {
ProcessorSupplier> aggregateSupplier = new KTableReduce<>(name, adder, subtractor);
return doAggregate(aggregateSupplier, valSerde, REDUCE_NAME, name);
}
@Override
public KTable count(String name) {
return this.aggregate(
new Initializer() {
@Override
public Long apply() {
return 0L;
}
},
new Aggregator() {
@Override
public Long apply(K aggKey, V value, Long aggregate) {
return aggregate + 1L;
}
}, new Aggregator() {
@Override
public Long apply(K aggKey, V value, Long aggregate) {
return aggregate - 1L;
}
},
Serdes.Long(), name);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy