All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.kafka.streams.kstream.internals.KStreamKStreamJoin Maven / Gradle / Ivy

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements. See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License. You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.kafka.streams.kstream.internals;

import org.apache.kafka.common.metrics.Sensor;
import org.apache.kafka.streams.KeyValue;
import org.apache.kafka.streams.kstream.ValueJoinerWithKey;
import org.apache.kafka.streams.kstream.Windowed;
import org.apache.kafka.streams.kstream.internals.KStreamImplJoin.TimeTracker;
import org.apache.kafka.streams.processor.To;
import org.apache.kafka.streams.processor.internals.metrics.StreamsMetricsImpl;
import org.apache.kafka.streams.state.KeyValueIterator;
import org.apache.kafka.streams.state.WindowStore;
import org.apache.kafka.streams.state.WindowStoreIterator;
import org.apache.kafka.streams.state.internals.KeyAndJoinSide;
import org.apache.kafka.streams.state.internals.LeftOrRightValue;
import org.apache.kafka.streams.StreamsConfig;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import java.util.Optional;

import static org.apache.kafka.streams.StreamsConfig.InternalConfig.EMIT_INTERVAL_MS_KSTREAMS_OUTER_JOIN_SPURIOUS_RESULTS_FIX;
import static org.apache.kafka.streams.processor.internals.metrics.TaskMetrics.droppedRecordsSensor;

@SuppressWarnings("deprecation") // Old PAPI. Needs to be migrated.
class KStreamKStreamJoin implements org.apache.kafka.streams.processor.ProcessorSupplier {
    private static final Logger LOG = LoggerFactory.getLogger(KStreamKStreamJoin.class);

    private final String otherWindowName;
    private final long joinBeforeMs;
    private final long joinAfterMs;
    private final long joinGraceMs;
    private final boolean enableSpuriousResultFix;

    private final ValueJoinerWithKey joiner;
    private final boolean outer;
    private final Optional outerJoinWindowName;
    private final boolean isLeftSide;

    private final TimeTracker sharedTimeTracker;

    KStreamKStreamJoin(final boolean isLeftSide,
                       final String otherWindowName,
                       final JoinWindowsInternal windows,
                       final ValueJoinerWithKey joiner,
                       final boolean outer,
                       final Optional outerJoinWindowName,
                       final TimeTracker sharedTimeTracker) {
        this.isLeftSide = isLeftSide;
        this.otherWindowName = otherWindowName;
        if (isLeftSide) {
            this.joinBeforeMs = windows.beforeMs;
            this.joinAfterMs = windows.afterMs;
        } else {
            this.joinBeforeMs = windows.afterMs;
            this.joinAfterMs = windows.beforeMs;
        }
        this.joinGraceMs = windows.gracePeriodMs();
        this.enableSpuriousResultFix = windows.spuriousResultFixEnabled();
        this.joiner = joiner;
        this.outer = outer;
        this.outerJoinWindowName = outerJoinWindowName;
        this.sharedTimeTracker = sharedTimeTracker;
    }

    @Override
    public org.apache.kafka.streams.processor.Processor get() {
        return new KStreamKStreamJoinProcessor();
    }

    private class KStreamKStreamJoinProcessor extends org.apache.kafka.streams.processor.AbstractProcessor {
        private WindowStore otherWindowStore;
        private Sensor droppedRecordsSensor;
        private Optional, LeftOrRightValue>> outerJoinWindowStore = Optional.empty();

        @Override
        public void init(final org.apache.kafka.streams.processor.ProcessorContext context) {
            super.init(context);
            final StreamsMetricsImpl metrics = (StreamsMetricsImpl) context.metrics();
            droppedRecordsSensor = droppedRecordsSensor(Thread.currentThread().getName(), context.taskId().toString(), metrics);
            otherWindowStore = context.getStateStore(otherWindowName);

            if (enableSpuriousResultFix) {
                outerJoinWindowStore = outerJoinWindowName.map(context::getStateStore);

                sharedTimeTracker.setEmitInterval(
                    StreamsConfig.InternalConfig.getLong(
                        context.appConfigs(),
                        EMIT_INTERVAL_MS_KSTREAMS_OUTER_JOIN_SPURIOUS_RESULTS_FIX,
                        1000L
                    )
                );
            }
        }

        @Override
        public void process(final K key, final V1 value) {
            // we do join iff keys are equal, thus, if key is null we cannot join and just ignore the record
            //
            // we also ignore the record if value is null, because in a key-value data model a null-value indicates
            // an empty message (ie, there is nothing to be joined) -- this contrast SQL NULL semantics
            // furthermore, on left/outer joins 'null' in ValueJoiner#apply() indicates a missing record --
            // thus, to be consistent and to avoid ambiguous null semantics, null values are ignored
            if (key == null || value == null) {
                LOG.warn(
                    "Skipping record due to null key or value. key=[{}] value=[{}] topic=[{}] partition=[{}] offset=[{}]",
                    key, value, context().topic(), context().partition(), context().offset()
                );
                droppedRecordsSensor.record();
                return;
            }

            boolean needOuterJoin = outer;

            final long inputRecordTimestamp = context().timestamp();
            final long timeFrom = Math.max(0L, inputRecordTimestamp - joinBeforeMs);
            final long timeTo = Math.max(0L, inputRecordTimestamp + joinAfterMs);

            sharedTimeTracker.advanceStreamTime(inputRecordTimestamp);

            // Emit all non-joined records which window has closed
            if (inputRecordTimestamp == sharedTimeTracker.streamTime) {
                outerJoinWindowStore.ifPresent(this::emitNonJoinedOuterRecords);
            }

            try (final WindowStoreIterator iter = otherWindowStore.fetch(key, timeFrom, timeTo)) {
                while (iter.hasNext()) {
                    needOuterJoin = false;
                    final KeyValue otherRecord = iter.next();
                    final long otherRecordTimestamp = otherRecord.key;

                    outerJoinWindowStore.ifPresent(store -> {
                        // Delete the joined record from the non-joined outer window store
                        store.put(KeyAndJoinSide.make(!isLeftSide, key), null, otherRecordTimestamp);
                    });

                    context().forward(
                        key,
                        joiner.apply(key, value, otherRecord.value),
                        To.all().withTimestamp(Math.max(inputRecordTimestamp, otherRecordTimestamp)));
                }

                if (needOuterJoin) {
                    // The maxStreamTime contains the max time observed in both sides of the join.
                    // Having access to the time observed in the other join side fixes the following
                    // problem:
                    //
                    // Say we have a window size of 5 seconds
                    //  1. A non-joined record wth time T10 is seen in the left-topic (maxLeftStreamTime: 10)
                    //     The record is not processed yet, and is added to the outer-join store
                    //  2. A non-joined record with time T2 is seen in the right-topic (maxRightStreamTime: 2)
                    //     The record is not processed yet, and is added to the outer-join store
                    //  3. A joined record with time T11 is seen in the left-topic (maxLeftStreamTime: 11)
                    //     It is time to look at the expired records. T10 and T2 should be emitted, but
                    //     because T2 was late, then it is not fetched by the window store, so it is not processed
                    //
                    // See KStreamKStreamLeftJoinTest.testLowerWindowBound() tests
                    //
                    // This condition below allows us to process the out-of-order records without the need
                    // to hold it in the temporary outer store
                    if (!outerJoinWindowStore.isPresent() || timeTo < sharedTimeTracker.streamTime) {
                        context().forward(key, joiner.apply(key, value, null));
                    } else {
                        sharedTimeTracker.updatedMinTime(inputRecordTimestamp);
                        outerJoinWindowStore.ifPresent(store -> store.put(
                            KeyAndJoinSide.make(isLeftSide, key),
                            LeftOrRightValue.make(isLeftSide, value),
                            inputRecordTimestamp));
                    }
                }
            }
        }

        @SuppressWarnings("unchecked")
        private void emitNonJoinedOuterRecords(final WindowStore, LeftOrRightValue> store) {
            // calling `store.all()` creates an iterator what is an expensive operation on RocksDB;
            // to reduce runtime cost, we try to avoid paying those cost

            // only try to emit left/outer join results if there _might_ be any result records
            if (sharedTimeTracker.minTime >= sharedTimeTracker.streamTime - joinAfterMs - joinGraceMs) {
                return;
            }
            // throttle the emit frequency to a (configurable) interval;
            // we use processing time to decouple from data properties,
            // as throttling is a non-functional performance optimization
            if (context.currentSystemTimeMs() < sharedTimeTracker.nextTimeToEmit) {
                return;
            }
            if (sharedTimeTracker.nextTimeToEmit == 0) {
                sharedTimeTracker.nextTimeToEmit = context.currentSystemTimeMs();
            }
            sharedTimeTracker.advanceNextTimeToEmit();

            // reset to MAX_VALUE in case the store is empty
            sharedTimeTracker.minTime = Long.MAX_VALUE;

            try (final KeyValueIterator>, LeftOrRightValue> it = store.all()) {
                while (it.hasNext()) {
                    final KeyValue>, LeftOrRightValue> record = it.next();

                    final Windowed> windowedKey = record.key;
                    final LeftOrRightValue value = record.value;
                    sharedTimeTracker.minTime = windowedKey.window().start();

                    // Skip next records if window has not closed
                    if (windowedKey.window().start() + joinAfterMs + joinGraceMs >= sharedTimeTracker.streamTime) {
                        break;
                    }

                    final K key = windowedKey.key().getKey();
                    final long time = windowedKey.window().start();

                    final R nullJoinedValue;
                    if (isLeftSide) {
                        nullJoinedValue = joiner.apply(key,
                            (V1) value.getLeftValue(),
                            (V2) value.getRightValue());
                    } else {
                        nullJoinedValue = joiner.apply(key,
                            (V1) value.getRightValue(),
                            (V2) value.getLeftValue());
                    }

                    context().forward(key, nullJoinedValue, To.all().withTimestamp(time));

                    // Delete the key from the outer window store now it is emitted
                    store.put(record.key.key(), null, record.key.window().start());
                }
            }
        }
    }
}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy