Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.kafka.streams.kstream.internals;
import org.apache.kafka.common.metrics.Sensor;
import org.apache.kafka.streams.kstream.KeyValueMapper;
import org.apache.kafka.streams.kstream.ValueJoiner;
import org.apache.kafka.streams.processor.To;
import org.apache.kafka.streams.processor.internals.metrics.StreamsMetricsImpl;
import org.apache.kafka.streams.state.ValueAndTimestamp;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import static org.apache.kafka.streams.processor.internals.metrics.TaskMetrics.droppedRecordsSensor;
import static org.apache.kafka.streams.state.ValueAndTimestamp.getValueOrNull;
@SuppressWarnings("deprecation") // Old PAPI. Needs to be migrated.
class KTableKTableInnerJoin extends KTableKTableAbstractJoin {
private static final Logger LOG = LoggerFactory.getLogger(KTableKTableInnerJoin.class);
private final KeyValueMapper keyValueMapper = (key, value) -> key;
KTableKTableInnerJoin(final KTableImpl table1,
final KTableImpl table2,
final ValueJoiner super V1, ? super V2, ? extends R> joiner) {
super(table1, table2, joiner);
}
@Override
public org.apache.kafka.streams.processor.Processor> get() {
return new KTableKTableJoinProcessor(valueGetterSupplier2.get());
}
@Override
public KTableValueGetterSupplier view() {
return new KTableKTableInnerJoinValueGetterSupplier(valueGetterSupplier1, valueGetterSupplier2);
}
private class KTableKTableInnerJoinValueGetterSupplier extends KTableKTableAbstractJoinValueGetterSupplier {
KTableKTableInnerJoinValueGetterSupplier(final KTableValueGetterSupplier valueGetterSupplier1,
final KTableValueGetterSupplier valueGetterSupplier2) {
super(valueGetterSupplier1, valueGetterSupplier2);
}
public KTableValueGetter get() {
return new KTableKTableInnerJoinValueGetter(valueGetterSupplier1.get(), valueGetterSupplier2.get());
}
}
private class KTableKTableJoinProcessor extends org.apache.kafka.streams.processor.AbstractProcessor> {
private final KTableValueGetter valueGetter;
private Sensor droppedRecordsSensor;
KTableKTableJoinProcessor(final KTableValueGetter valueGetter) {
this.valueGetter = valueGetter;
}
@Override
public void init(final org.apache.kafka.streams.processor.ProcessorContext context) {
super.init(context);
droppedRecordsSensor = droppedRecordsSensor(
Thread.currentThread().getName(),
context.taskId().toString(),
(StreamsMetricsImpl) context.metrics()
);
valueGetter.init(context);
}
@Override
public void process(final K key, final Change change) {
// we do join iff keys are equal, thus, if key is null we cannot join and just ignore the record
if (key == null) {
LOG.warn(
"Skipping record due to null key. change=[{}] topic=[{}] partition=[{}] offset=[{}]",
change, context().topic(), context().partition(), context().offset()
);
droppedRecordsSensor.record();
return;
}
R newValue = null;
final long resultTimestamp;
R oldValue = null;
final ValueAndTimestamp valueAndTimestampRight = valueGetter.get(key);
final V2 valueRight = getValueOrNull(valueAndTimestampRight);
if (valueRight == null) {
return;
}
resultTimestamp = Math.max(context().timestamp(), valueAndTimestampRight.timestamp());
if (change.newValue != null) {
newValue = joiner.apply(change.newValue, valueRight);
}
if (sendOldValues && change.oldValue != null) {
oldValue = joiner.apply(change.oldValue, valueRight);
}
context().forward(key, new Change<>(newValue, oldValue), To.all().withTimestamp(resultTimestamp));
}
@Override
public void close() {
valueGetter.close();
}
}
private class KTableKTableInnerJoinValueGetter implements KTableValueGetter {
private final KTableValueGetter valueGetter1;
private final KTableValueGetter valueGetter2;
KTableKTableInnerJoinValueGetter(final KTableValueGetter valueGetter1,
final KTableValueGetter valueGetter2) {
this.valueGetter1 = valueGetter1;
this.valueGetter2 = valueGetter2;
}
@Override
public void init(final org.apache.kafka.streams.processor.ProcessorContext context) {
valueGetter1.init(context);
valueGetter2.init(context);
}
@Override
public ValueAndTimestamp get(final K key) {
final ValueAndTimestamp valueAndTimestamp1 = valueGetter1.get(key);
final V1 value1 = getValueOrNull(valueAndTimestamp1);
if (value1 != null) {
final ValueAndTimestamp valueAndTimestamp2 = valueGetter2.get(keyValueMapper.apply(key, value1));
final V2 value2 = getValueOrNull(valueAndTimestamp2);
if (value2 != null) {
return ValueAndTimestamp.make(
joiner.apply(value1, value2),
Math.max(valueAndTimestamp1.timestamp(), valueAndTimestamp2.timestamp()));
} else {
return null;
}
} else {
return null;
}
}
@Override
public void close() {
valueGetter1.close();
valueGetter2.close();
}
}
}