org.apache.kylin.engine.mr.steps.FactDistinctColumnsReducer Maven / Gradle / Ivy
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.kylin.engine.mr.steps;
import java.io.DataOutputStream;
import java.io.IOException;
import java.nio.ByteBuffer;
import java.nio.charset.StandardCharsets;
import java.util.Collections;
import java.util.List;
import java.util.Map;
import org.apache.commons.io.output.ByteArrayOutputStream;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.io.ArrayPrimitiveWritable;
import org.apache.hadoop.io.BytesWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.lib.output.MultipleOutputs;
import org.apache.kylin.common.KylinConfig;
import org.apache.kylin.common.util.Bytes;
import org.apache.kylin.common.util.Dictionary;
import org.apache.kylin.cube.CubeInstance;
import org.apache.kylin.cube.CubeManager;
import org.apache.kylin.cube.model.CubeDesc;
import org.apache.kylin.dict.DictionaryGenerator;
import org.apache.kylin.dict.IDictionaryBuilder;
import org.apache.kylin.engine.mr.KylinReducer;
import org.apache.kylin.engine.mr.common.AbstractHadoopJob;
import org.apache.kylin.engine.mr.common.BatchConstants;
import org.apache.kylin.measure.BufferedMeasureCodec;
import org.apache.kylin.measure.hllc.HLLCounter;
import org.apache.kylin.metadata.model.TblColRef;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import com.google.common.base.Preconditions;
import com.google.common.collect.Lists;
import com.google.common.collect.Maps;
/**
*/
public class FactDistinctColumnsReducer extends KylinReducer {
private static final Logger logger = LoggerFactory.getLogger(FactDistinctColumnsReducer.class);
private List baseCuboidRowCountInMappers;
protected Map cuboidHLLMap = null;
protected long baseCuboidId;
protected CubeDesc cubeDesc;
private long totalRowsBeforeMerge = 0;
private int samplingPercentage;
private TblColRef col = null;
private boolean isStatistics = false;
private KylinConfig cubeConfig;
private int taskId;
private int rowCount = 0;
private FactDistinctColumnsReducerMapping reducerMapping;
//local build dict
private boolean buildDictInReducer;
private IDictionaryBuilder builder;
private String maxValue = null;
private String minValue = null;
public static final String DICT_FILE_POSTFIX = ".rldict";
public static final String DIMENSION_COL_INFO_FILE_POSTFIX = ".dci";
private MultipleOutputs mos;
@Override
protected void doSetup(Context context) throws IOException {
super.bindCurrentConfiguration(context.getConfiguration());
Configuration conf = context.getConfiguration();
mos = new MultipleOutputs(context);
KylinConfig config = AbstractHadoopJob.loadKylinPropsAndMetadata();
String cubeName = conf.get(BatchConstants.CFG_CUBE_NAME);
CubeInstance cube = CubeManager.getInstance(config).getCube(cubeName);
cubeConfig = cube.getConfig();
cubeDesc = cube.getDescriptor();
taskId = context.getTaskAttemptID().getTaskID().getId();
reducerMapping = new FactDistinctColumnsReducerMapping(cube);
logger.info("reducer no " + taskId + ", role play " + reducerMapping.getRolePlayOfReducer(taskId));
if (reducerMapping.isCuboidRowCounterReducer(taskId)) {
// hll
isStatistics = true;
baseCuboidId = cube.getCuboidScheduler().getBaseCuboidId();
baseCuboidRowCountInMappers = Lists.newArrayList();
cuboidHLLMap = Maps.newHashMap();
samplingPercentage = Integer
.parseInt(context.getConfiguration().get(BatchConstants.CFG_STATISTICS_SAMPLING_PERCENT));
logger.info("Reducer " + taskId + " handling stats");
} else {
// normal col
col = reducerMapping.getColForReducer(taskId);
Preconditions.checkNotNull(col);
// local build dict
buildDictInReducer = config.isBuildDictInReducerEnabled();
if (cubeDesc.getDictionaryBuilderClass(col) != null) { // only works with default dictionary builder
buildDictInReducer = false;
}
if (reducerMapping.getReducerNumForDimCol(col) > 1) {
buildDictInReducer = false; // only works if this is the only reducer of a dictionary column
}
if (buildDictInReducer) {
builder = DictionaryGenerator.newDictionaryBuilder(col.getType());
builder.init(null, 0, null);
}
logger.info("Reducer " + taskId + " handling column " + col + ", buildDictInReducer=" + buildDictInReducer);
}
}
@Override
public void doReduce(SelfDefineSortableKey skey, Iterable values, Context context)
throws IOException, InterruptedException {
Text key = skey.getText();
if (isStatistics) {
// for hll
long cuboidId = Bytes.toLong(key.getBytes(), 1, Bytes.SIZEOF_LONG);
for (Text value : values) {
HLLCounter hll = new HLLCounter(cubeConfig.getCubeStatsHLLPrecision());
ByteBuffer bf = ByteBuffer.wrap(value.getBytes(), 0, value.getLength());
hll.readRegisters(bf);
totalRowsBeforeMerge += hll.getCountEstimate();
if (cuboidId == baseCuboidId) {
baseCuboidRowCountInMappers.add(hll.getCountEstimate());
}
if (cuboidHLLMap.get(cuboidId) != null) {
cuboidHLLMap.get(cuboidId).merge(hll);
} else {
cuboidHLLMap.put(cuboidId, hll);
}
}
} else {
String value = Bytes.toString(key.getBytes(), 1, key.getLength() - 1);
logAFewRows(value);
// if dimension col, compute max/min value
if (cubeDesc.listDimensionColumnsExcludingDerived(true).contains(col) && col.getType().needCompare()) {
if (minValue == null || col.getType().compare(minValue, value) > 0) {
minValue = value;
}
if (maxValue == null || col.getType().compare(maxValue, value) < 0) {
maxValue = value;
}
}
//if dict column
if (cubeDesc.getAllColumnsNeedDictionaryBuilt().contains(col)) {
if (buildDictInReducer) {
builder.addValue(value);
} else {
byte[] keyBytes = Bytes.copy(key.getBytes(), 1, key.getLength() - 1);
// output written to baseDir/colName/-r-00000 (etc)
String fileName = col.getIdentity() + "/";
mos.write(BatchConstants.CFG_OUTPUT_COLUMN, NullWritable.get(), new Text(keyBytes), fileName);
}
}
}
rowCount++;
}
private void logAFewRows(String value) {
if (rowCount < 10) {
logger.info("Received value: " + value);
}
}
@Override
protected void doCleanup(Context context) throws IOException, InterruptedException {
if (isStatistics) {
//output the hll info;
List allCuboids = Lists.newArrayList();
allCuboids.addAll(cuboidHLLMap.keySet());
Collections.sort(allCuboids);
logMapperAndCuboidStatistics(allCuboids); // for human check
outputStatistics(allCuboids);
} else {
//dimension col
if (cubeDesc.listDimensionColumnsExcludingDerived(true).contains(col)) {
outputDimRangeInfo();
}
// dic col
if (buildDictInReducer) {
Dictionary dict = builder.build();
outputDict(col, dict);
}
}
mos.close();
}
private void outputDimRangeInfo() throws IOException, InterruptedException {
if (col != null && minValue != null) {
// output written to baseDir/colName/colName.dci-r-00000 (etc)
String dimRangeFileName = col.getIdentity() + "/" + col.getName() + DIMENSION_COL_INFO_FILE_POSTFIX;
mos.write(BatchConstants.CFG_OUTPUT_PARTITION, NullWritable.get(),
new Text(minValue.getBytes(StandardCharsets.UTF_8)), dimRangeFileName);
mos.write(BatchConstants.CFG_OUTPUT_PARTITION, NullWritable.get(),
new Text(maxValue.getBytes(StandardCharsets.UTF_8)), dimRangeFileName);
logger.info("write dimension range info for col : " + col.getName() + " minValue:" + minValue
+ " maxValue:" + maxValue);
}
}
private void outputDict(TblColRef col, Dictionary dict) throws IOException, InterruptedException {
// output written to baseDir/colName/colName.rldict-r-00000 (etc)
String dictFileName = col.getIdentity() + "/" + col.getName() + DICT_FILE_POSTFIX;
try (ByteArrayOutputStream baos = new ByteArrayOutputStream();
DataOutputStream outputStream = new DataOutputStream(baos);) {
outputStream.writeUTF(dict.getClass().getName());
dict.write(outputStream);
mos.write(BatchConstants.CFG_OUTPUT_DICT, NullWritable.get(),
new ArrayPrimitiveWritable(baos.toByteArray()), dictFileName);
}
}
private void outputStatistics(List allCuboids) throws IOException, InterruptedException {
// output written to baseDir/statistics/statistics-r-00000 (etc)
String statisticsFileName = BatchConstants.CFG_OUTPUT_STATISTICS + "/" + BatchConstants.CFG_OUTPUT_STATISTICS;
ByteBuffer valueBuf = ByteBuffer.allocate(BufferedMeasureCodec.DEFAULT_BUFFER_SIZE);
// mapper overlap ratio at key -1
long grandTotal = 0;
for (HLLCounter hll : cuboidHLLMap.values()) {
grandTotal += hll.getCountEstimate();
}
double mapperOverlapRatio = grandTotal == 0 ? 0 : (double) totalRowsBeforeMerge / grandTotal;
mos.write(BatchConstants.CFG_OUTPUT_STATISTICS, new LongWritable(-1),
new BytesWritable(Bytes.toBytes(mapperOverlapRatio)), statisticsFileName);
// mapper number at key -2
mos.write(BatchConstants.CFG_OUTPUT_STATISTICS, new LongWritable(-2),
new BytesWritable(Bytes.toBytes(baseCuboidRowCountInMappers.size())), statisticsFileName);
// sampling percentage at key 0
mos.write(BatchConstants.CFG_OUTPUT_STATISTICS, new LongWritable(0L),
new BytesWritable(Bytes.toBytes(samplingPercentage)), statisticsFileName);
for (long i : allCuboids) {
valueBuf.clear();
cuboidHLLMap.get(i).writeRegisters(valueBuf);
valueBuf.flip();
mos.write(BatchConstants.CFG_OUTPUT_STATISTICS, new LongWritable(i),
new BytesWritable(valueBuf.array(), valueBuf.limit()), statisticsFileName);
}
}
private void logMapperAndCuboidStatistics(List allCuboids) throws IOException {
logger.info("Cuboid number for task: " + taskId + "\t" + allCuboids.size());
logger.info("Samping percentage: \t" + samplingPercentage);
logger.info("The following statistics are collected based on sampling data.");
logger.info("Number of Mappers: " + baseCuboidRowCountInMappers.size());
for (int i = 0; i < baseCuboidRowCountInMappers.size(); i++) {
if (baseCuboidRowCountInMappers.get(i) > 0) {
logger.info("Base Cuboid in Mapper " + i + " row count: \t " + baseCuboidRowCountInMappers.get(i));
}
}
long grantTotal = 0;
for (long i : allCuboids) {
grantTotal += cuboidHLLMap.get(i).getCountEstimate();
logger.info("Cuboid " + i + " row count is: \t " + cuboidHLLMap.get(i).getCountEstimate());
}
logger.info("Sum of row counts (before merge) is: \t " + totalRowsBeforeMerge);
logger.info("After merge, the row count: \t " + grantTotal);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy