org.apache.lens.ml.algo.spark.ColumnFeatureFunction Maven / Gradle / Ivy
/**
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.apache.lens.ml.algo.spark;
import org.apache.hadoop.io.WritableComparable;
import org.apache.hive.hcatalog.data.HCatRecord;
import org.apache.log4j.Logger;
import org.apache.spark.mllib.linalg.Vectors;
import org.apache.spark.mllib.regression.LabeledPoint;
import com.google.common.base.Preconditions;
import scala.Tuple2;
/**
* A feature function that directly maps an HCatRecord to a feature vector. Each column becomes a feature in the vector,
* with the value of the feature obtained using the value mapper for that column
*/
public class ColumnFeatureFunction extends FeatureFunction {
/** The Constant LOG. */
public static final Logger LOG = Logger.getLogger(ColumnFeatureFunction.class);
/** The feature value mappers. */
private final FeatureValueMapper[] featureValueMappers;
/** The feature positions. */
private final int[] featurePositions;
/** The label column pos. */
private final int labelColumnPos;
/** The num features. */
private final int numFeatures;
/** The default labeled point. */
private final LabeledPoint defaultLabeledPoint;
/**
* Feature positions and value mappers are parallel arrays. featurePositions[i] gives the position of ith feature in
* the HCatRecord, and valueMappers[i] gives the value mapper used to map that feature to a Double value
*
* @param featurePositions position number of feature column in the HCatRecord
* @param valueMappers mapper for each column position
* @param labelColumnPos position of the label column
* @param numFeatures number of features in the feature vector
* @param defaultLabel default lable to be used for null records
*/
public ColumnFeatureFunction(int[] featurePositions, FeatureValueMapper[] valueMappers, int labelColumnPos,
int numFeatures, double defaultLabel) {
Preconditions.checkNotNull(valueMappers, "Value mappers argument is required");
Preconditions.checkNotNull(featurePositions, "Feature positions are required");
Preconditions.checkArgument(valueMappers.length == featurePositions.length,
"Mismatch between number of value mappers and feature positions");
this.featurePositions = featurePositions;
this.featureValueMappers = valueMappers;
this.labelColumnPos = labelColumnPos;
this.numFeatures = numFeatures;
defaultLabeledPoint = new LabeledPoint(defaultLabel, Vectors.dense(new double[numFeatures]));
}
/*
* (non-Javadoc)
*
* @see org.apache.lens.ml.spark.FeatureFunction#call(scala.Tuple2)
*/
@Override
public LabeledPoint call(Tuple2 tuple) throws Exception {
HCatRecord record = tuple._2();
if (record == null) {
LOG.info("@@@ Null record");
return defaultLabeledPoint;
}
double[] features = new double[numFeatures];
for (int i = 0; i < numFeatures; i++) {
int featurePos = featurePositions[i];
features[i] = featureValueMappers[i].call(record.get(featurePos));
}
double label = featureValueMappers[labelColumnPos].call(record.get(labelColumnPos));
return new LabeledPoint(label, Vectors.dense(features));
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy