All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.lucene.codecs.memory.FSTTermsWriter Maven / Gradle / Ivy

The newest version!
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.lucene.codecs.memory;

import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import org.apache.lucene.codecs.BlockTermState;
import org.apache.lucene.codecs.CodecUtil;
import org.apache.lucene.codecs.FieldsConsumer;
import org.apache.lucene.codecs.NormsProducer;
import org.apache.lucene.codecs.PostingsWriterBase;
import org.apache.lucene.index.FieldInfo;
import org.apache.lucene.index.FieldInfos;
import org.apache.lucene.index.Fields;
import org.apache.lucene.index.IndexFileNames;
import org.apache.lucene.index.IndexOptions;
import org.apache.lucene.index.SegmentWriteState;
import org.apache.lucene.index.Terms;
import org.apache.lucene.index.TermsEnum;
import org.apache.lucene.store.ByteBuffersDataOutput;
import org.apache.lucene.store.DataOutput;
import org.apache.lucene.store.IndexOutput;
import org.apache.lucene.util.BytesRef;
import org.apache.lucene.util.FixedBitSet;
import org.apache.lucene.util.IOUtils;
import org.apache.lucene.util.IntsRefBuilder;
import org.apache.lucene.util.fst.FST;
import org.apache.lucene.util.fst.FSTCompiler;
import org.apache.lucene.util.fst.Util;

/**
 * FST-based term dict, using metadata as FST output.
 *
 * 

The FST directly holds the mapping between <term, metadata>. * *

Term metadata consists of three parts: 1. term statistics: docFreq, totalTermFreq; 2. * monotonic long[], e.g. the pointer to the postings list for that term; 3. generic byte[], e.g. * other information need by postings reader. * *

File: * *

* *

* *

Term Dictionary

* *

The .tst contains a list of FSTs, one for each field. The FST maps a term to its corresponding * statistics (e.g. docfreq) and metadata (e.g. information for postings list reader like file * pointer to postings list). * *

Typically the metadata is separated into two parts: * *

    *
  • Monotonical long array: Some metadata will always be ascending in order with the * corresponding term. This part is used by FST to share outputs between arcs. *
  • Generic byte array: Used to store non-monotonic metadata. *
* * File format: * *
    *
  • TermsDict(.tst) --> Header, PostingsHeader, FieldSummary, DirOffset *
  • FieldSummary --> NumFields, <FieldNumber, NumTerms, SumTotalTermFreq?, SumDocFreq, * DocCount, LongsSize, TermFST >NumFields *
  • TermFST --> {@link FST FST<TermData>} *
  • TermData --> Flag, BytesSize?, LongDeltaLongsSize?, * ByteBytesSize?, < DocFreq[Same?], (TotalTermFreq-DocFreq) > ? *
  • Header --> {@link CodecUtil#writeIndexHeader IndexHeader} *
  • DirOffset --> {@link DataOutput#writeLong Uint64} *
  • DocFreq, LongsSize, BytesSize, NumFields, FieldNumber, DocCount --> {@link * DataOutput#writeVInt VInt} *
  • TotalTermFreq, NumTerms, SumTotalTermFreq, SumDocFreq, LongDelta --> {@link * DataOutput#writeVLong VLong} *
* *

Notes: * *

    *
  • The format of PostingsHeader and generic meta bytes are customized by the specific postings * implementation: they contain arbitrary per-file data (such as parameters or versioning * information), and per-term data (non-monotonic ones like pulsed postings data). *
  • The format of TermData is determined by FST, typically monotonic metadata will be dense * around shallow arcs, while in deeper arcs only generic bytes and term statistics exist. *
  • The byte Flag is used to indicate which part of metadata exists on current arc. Specially * the monotonic part is omitted when it is an array of 0s. *
  • Since LongsSize is per-field fixed, it is only written once in field summary. *
* * @lucene.experimental */ public class FSTTermsWriter extends FieldsConsumer { static final String TERMS_EXTENSION = "tfp"; static final String TERMS_CODEC_NAME = "FSTTerms"; public static final int TERMS_VERSION_START = 2; public static final int TERMS_VERSION_CURRENT = TERMS_VERSION_START; final PostingsWriterBase postingsWriter; final FieldInfos fieldInfos; IndexOutput out; final int maxDoc; final List fields = new ArrayList<>(); public FSTTermsWriter(SegmentWriteState state, PostingsWriterBase postingsWriter) throws IOException { final String termsFileName = IndexFileNames.segmentFileName( state.segmentInfo.name, state.segmentSuffix, TERMS_EXTENSION); this.postingsWriter = postingsWriter; this.fieldInfos = state.fieldInfos; this.out = state.directory.createOutput(termsFileName, state.context); this.maxDoc = state.segmentInfo.maxDoc(); boolean success = false; try { CodecUtil.writeIndexHeader( out, TERMS_CODEC_NAME, TERMS_VERSION_CURRENT, state.segmentInfo.getId(), state.segmentSuffix); this.postingsWriter.init(out, state); success = true; } finally { if (!success) { IOUtils.closeWhileHandlingException(out); } } } private void writeTrailer(IndexOutput out, long dirStart) throws IOException { out.writeLong(dirStart); } @Override public void write(Fields fields, NormsProducer norms) throws IOException { for (String field : fields) { Terms terms = fields.terms(field); if (terms == null) { continue; } FieldInfo fieldInfo = fieldInfos.fieldInfo(field); boolean hasFreq = fieldInfo.getIndexOptions().compareTo(IndexOptions.DOCS_AND_FREQS) >= 0; TermsEnum termsEnum = terms.iterator(); TermsWriter termsWriter = new TermsWriter(fieldInfo); long sumTotalTermFreq = 0; long sumDocFreq = 0; FixedBitSet docsSeen = new FixedBitSet(maxDoc); while (true) { BytesRef term = termsEnum.next(); if (term == null) { break; } BlockTermState termState = postingsWriter.writeTerm(term, termsEnum, docsSeen, norms); if (termState != null) { termsWriter.finishTerm(term, termState); sumTotalTermFreq += termState.totalTermFreq; sumDocFreq += termState.docFreq; } } termsWriter.finish(hasFreq ? sumTotalTermFreq : -1, sumDocFreq, docsSeen.cardinality()); } } @Override public void close() throws IOException { if (out != null) { boolean success = false; try { // write field summary final long dirStart = out.getFilePointer(); out.writeVInt(fields.size()); for (FieldMetaData field : fields) { out.writeVInt(field.fieldInfo.number); out.writeVLong(field.numTerms); if (field.fieldInfo.getIndexOptions() != IndexOptions.DOCS) { out.writeVLong(field.sumTotalTermFreq); } out.writeVLong(field.sumDocFreq); out.writeVInt(field.docCount); field.dict.save(out, out); } writeTrailer(out, dirStart); CodecUtil.writeFooter(out); success = true; } finally { if (success) { IOUtils.close(out, postingsWriter); } else { IOUtils.closeWhileHandlingException(out, postingsWriter); } out = null; } } } private static class FieldMetaData { public final FieldInfo fieldInfo; public final long numTerms; public final long sumTotalTermFreq; public final long sumDocFreq; public final int docCount; public final FST dict; public FieldMetaData( FieldInfo fieldInfo, long numTerms, long sumTotalTermFreq, long sumDocFreq, int docCount, FST fst) { this.fieldInfo = fieldInfo; this.numTerms = numTerms; this.sumTotalTermFreq = sumTotalTermFreq; this.sumDocFreq = sumDocFreq; this.docCount = docCount; this.dict = fst; } } final class TermsWriter { private final FSTCompiler fstCompiler; private final FSTTermOutputs outputs; private final FieldInfo fieldInfo; private long numTerms; private final IntsRefBuilder scratchTerm = new IntsRefBuilder(); private final ByteBuffersDataOutput metaWriter = ByteBuffersDataOutput.newResettableInstance(); TermsWriter(FieldInfo fieldInfo) throws IOException { this.numTerms = 0; this.fieldInfo = fieldInfo; postingsWriter.setField(fieldInfo); this.outputs = new FSTTermOutputs(fieldInfo); this.fstCompiler = new FSTCompiler.Builder<>(FST.INPUT_TYPE.BYTE1, outputs).build(); } public void finishTerm(BytesRef text, BlockTermState state) throws IOException { // write term meta data into fst final FSTTermOutputs.TermData meta = new FSTTermOutputs.TermData(); meta.bytes = null; meta.docFreq = state.docFreq; meta.totalTermFreq = state.totalTermFreq; postingsWriter.encodeTerm(metaWriter, fieldInfo, state, true); if (metaWriter.size() > 0) { meta.bytes = metaWriter.toArrayCopy(); metaWriter.reset(); } fstCompiler.add(Util.toIntsRef(text, scratchTerm), meta); numTerms++; } public void finish(long sumTotalTermFreq, long sumDocFreq, int docCount) throws IOException { // save FST dict if (numTerms > 0) { final FST fst = FST.fromFSTReader(fstCompiler.compile(), fstCompiler.getFSTReader()); fields.add( new FieldMetaData(fieldInfo, numTerms, sumTotalTermFreq, sumDocFreq, docCount, fst)); } } } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy