org.apache.lucene.codecs.memory.FSTTermsWriter Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of lucene-codecs Show documentation
Show all versions of lucene-codecs Show documentation
Codecs and postings formats for Apache Lucene.
The newest version!
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.lucene.codecs.memory;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import org.apache.lucene.codecs.BlockTermState;
import org.apache.lucene.codecs.CodecUtil;
import org.apache.lucene.codecs.FieldsConsumer;
import org.apache.lucene.codecs.NormsProducer;
import org.apache.lucene.codecs.PostingsWriterBase;
import org.apache.lucene.index.FieldInfo;
import org.apache.lucene.index.FieldInfos;
import org.apache.lucene.index.Fields;
import org.apache.lucene.index.IndexFileNames;
import org.apache.lucene.index.IndexOptions;
import org.apache.lucene.index.SegmentWriteState;
import org.apache.lucene.index.Terms;
import org.apache.lucene.index.TermsEnum;
import org.apache.lucene.store.ByteBuffersDataOutput;
import org.apache.lucene.store.DataOutput;
import org.apache.lucene.store.IndexOutput;
import org.apache.lucene.util.BytesRef;
import org.apache.lucene.util.FixedBitSet;
import org.apache.lucene.util.IOUtils;
import org.apache.lucene.util.IntsRefBuilder;
import org.apache.lucene.util.fst.FST;
import org.apache.lucene.util.fst.FSTCompiler;
import org.apache.lucene.util.fst.Util;
/**
* FST-based term dict, using metadata as FST output.
*
* The FST directly holds the mapping between <term, metadata>.
*
*
Term metadata consists of three parts: 1. term statistics: docFreq, totalTermFreq; 2.
* monotonic long[], e.g. the pointer to the postings list for that term; 3. generic byte[], e.g.
* other information need by postings reader.
*
*
File:
*
*
* .tst
: Term Dictionary
*
*
* Term Dictionary
*
* The .tst contains a list of FSTs, one for each field. The FST maps a term to its corresponding
* statistics (e.g. docfreq) and metadata (e.g. information for postings list reader like file
* pointer to postings list).
*
*
Typically the metadata is separated into two parts:
*
*
* - Monotonical long array: Some metadata will always be ascending in order with the
* corresponding term. This part is used by FST to share outputs between arcs.
*
- Generic byte array: Used to store non-monotonic metadata.
*
*
* File format:
*
*
* - TermsDict(.tst) --> Header, PostingsHeader, FieldSummary, DirOffset
*
- FieldSummary --> NumFields, <FieldNumber, NumTerms, SumTotalTermFreq?, SumDocFreq,
* DocCount, LongsSize, TermFST >NumFields
*
- TermFST --> {@link FST FST<TermData>}
*
- TermData --> Flag, BytesSize?, LongDeltaLongsSize?,
* ByteBytesSize?, < DocFreq[Same?], (TotalTermFreq-DocFreq) > ?
*
- Header --> {@link CodecUtil#writeIndexHeader IndexHeader}
*
- DirOffset --> {@link DataOutput#writeLong Uint64}
*
- DocFreq, LongsSize, BytesSize, NumFields, FieldNumber, DocCount --> {@link
* DataOutput#writeVInt VInt}
*
- TotalTermFreq, NumTerms, SumTotalTermFreq, SumDocFreq, LongDelta --> {@link
* DataOutput#writeVLong VLong}
*
*
* Notes:
*
*
* - The format of PostingsHeader and generic meta bytes are customized by the specific postings
* implementation: they contain arbitrary per-file data (such as parameters or versioning
* information), and per-term data (non-monotonic ones like pulsed postings data).
*
- The format of TermData is determined by FST, typically monotonic metadata will be dense
* around shallow arcs, while in deeper arcs only generic bytes and term statistics exist.
*
- The byte Flag is used to indicate which part of metadata exists on current arc. Specially
* the monotonic part is omitted when it is an array of 0s.
*
- Since LongsSize is per-field fixed, it is only written once in field summary.
*
*
* @lucene.experimental
*/
public class FSTTermsWriter extends FieldsConsumer {
static final String TERMS_EXTENSION = "tfp";
static final String TERMS_CODEC_NAME = "FSTTerms";
public static final int TERMS_VERSION_START = 2;
public static final int TERMS_VERSION_CURRENT = TERMS_VERSION_START;
final PostingsWriterBase postingsWriter;
final FieldInfos fieldInfos;
IndexOutput out;
final int maxDoc;
final List fields = new ArrayList<>();
public FSTTermsWriter(SegmentWriteState state, PostingsWriterBase postingsWriter)
throws IOException {
final String termsFileName =
IndexFileNames.segmentFileName(
state.segmentInfo.name, state.segmentSuffix, TERMS_EXTENSION);
this.postingsWriter = postingsWriter;
this.fieldInfos = state.fieldInfos;
this.out = state.directory.createOutput(termsFileName, state.context);
this.maxDoc = state.segmentInfo.maxDoc();
boolean success = false;
try {
CodecUtil.writeIndexHeader(
out,
TERMS_CODEC_NAME,
TERMS_VERSION_CURRENT,
state.segmentInfo.getId(),
state.segmentSuffix);
this.postingsWriter.init(out, state);
success = true;
} finally {
if (!success) {
IOUtils.closeWhileHandlingException(out);
}
}
}
private void writeTrailer(IndexOutput out, long dirStart) throws IOException {
out.writeLong(dirStart);
}
@Override
public void write(Fields fields, NormsProducer norms) throws IOException {
for (String field : fields) {
Terms terms = fields.terms(field);
if (terms == null) {
continue;
}
FieldInfo fieldInfo = fieldInfos.fieldInfo(field);
boolean hasFreq = fieldInfo.getIndexOptions().compareTo(IndexOptions.DOCS_AND_FREQS) >= 0;
TermsEnum termsEnum = terms.iterator();
TermsWriter termsWriter = new TermsWriter(fieldInfo);
long sumTotalTermFreq = 0;
long sumDocFreq = 0;
FixedBitSet docsSeen = new FixedBitSet(maxDoc);
while (true) {
BytesRef term = termsEnum.next();
if (term == null) {
break;
}
BlockTermState termState = postingsWriter.writeTerm(term, termsEnum, docsSeen, norms);
if (termState != null) {
termsWriter.finishTerm(term, termState);
sumTotalTermFreq += termState.totalTermFreq;
sumDocFreq += termState.docFreq;
}
}
termsWriter.finish(hasFreq ? sumTotalTermFreq : -1, sumDocFreq, docsSeen.cardinality());
}
}
@Override
public void close() throws IOException {
if (out != null) {
boolean success = false;
try {
// write field summary
final long dirStart = out.getFilePointer();
out.writeVInt(fields.size());
for (FieldMetaData field : fields) {
out.writeVInt(field.fieldInfo.number);
out.writeVLong(field.numTerms);
if (field.fieldInfo.getIndexOptions() != IndexOptions.DOCS) {
out.writeVLong(field.sumTotalTermFreq);
}
out.writeVLong(field.sumDocFreq);
out.writeVInt(field.docCount);
field.dict.save(out, out);
}
writeTrailer(out, dirStart);
CodecUtil.writeFooter(out);
success = true;
} finally {
if (success) {
IOUtils.close(out, postingsWriter);
} else {
IOUtils.closeWhileHandlingException(out, postingsWriter);
}
out = null;
}
}
}
private static class FieldMetaData {
public final FieldInfo fieldInfo;
public final long numTerms;
public final long sumTotalTermFreq;
public final long sumDocFreq;
public final int docCount;
public final FST dict;
public FieldMetaData(
FieldInfo fieldInfo,
long numTerms,
long sumTotalTermFreq,
long sumDocFreq,
int docCount,
FST fst) {
this.fieldInfo = fieldInfo;
this.numTerms = numTerms;
this.sumTotalTermFreq = sumTotalTermFreq;
this.sumDocFreq = sumDocFreq;
this.docCount = docCount;
this.dict = fst;
}
}
final class TermsWriter {
private final FSTCompiler fstCompiler;
private final FSTTermOutputs outputs;
private final FieldInfo fieldInfo;
private long numTerms;
private final IntsRefBuilder scratchTerm = new IntsRefBuilder();
private final ByteBuffersDataOutput metaWriter = ByteBuffersDataOutput.newResettableInstance();
TermsWriter(FieldInfo fieldInfo) throws IOException {
this.numTerms = 0;
this.fieldInfo = fieldInfo;
postingsWriter.setField(fieldInfo);
this.outputs = new FSTTermOutputs(fieldInfo);
this.fstCompiler = new FSTCompiler.Builder<>(FST.INPUT_TYPE.BYTE1, outputs).build();
}
public void finishTerm(BytesRef text, BlockTermState state) throws IOException {
// write term meta data into fst
final FSTTermOutputs.TermData meta = new FSTTermOutputs.TermData();
meta.bytes = null;
meta.docFreq = state.docFreq;
meta.totalTermFreq = state.totalTermFreq;
postingsWriter.encodeTerm(metaWriter, fieldInfo, state, true);
if (metaWriter.size() > 0) {
meta.bytes = metaWriter.toArrayCopy();
metaWriter.reset();
}
fstCompiler.add(Util.toIntsRef(text, scratchTerm), meta);
numTerms++;
}
public void finish(long sumTotalTermFreq, long sumDocFreq, int docCount) throws IOException {
// save FST dict
if (numTerms > 0) {
final FST fst =
FST.fromFSTReader(fstCompiler.compile(), fstCompiler.getFSTReader());
fields.add(
new FieldMetaData(fieldInfo, numTerms, sumTotalTermFreq, sumDocFreq, docCount, fst));
}
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy