org.apache.lucene.codecs.bloom.FuzzySet Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of lucene-codecs Show documentation
Show all versions of lucene-codecs Show documentation
Apache Lucene (module: codecs)
package org.apache.lucene.codecs.bloom;
/**
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
import java.io.IOException;
import org.apache.lucene.store.DataInput;
import org.apache.lucene.store.DataOutput;
import org.apache.lucene.util.BytesRef;
import org.apache.lucene.util.FixedBitSet;
/**
*
* A class used to represent a set of many, potentially large, values (e.g. many
* long strings such as URLs), using a significantly smaller amount of memory.
*
*
* The set is "lossy" in that it cannot definitively state that is does contain
* a value but it can definitively say if a value is not in
* the set. It can therefore be used as a Bloom Filter.
*
* Another application of the set is that it can be used to perform fuzzy counting because
* it can estimate reasonably accurately how many unique values are contained in the set.
*
* This class is NOT threadsafe.
*
* Internally a Bitset is used to record values and once a client has finished recording
* a stream of values the {@link #downsize(float)} method can be used to create a suitably smaller set that
* is sized appropriately for the number of values recorded and desired saturation levels.
*
*
* @lucene.experimental
*/
public class FuzzySet {
public static final int VERSION_SPI = 1; // HashFunction used to be loaded through a SPI
public static final int VERSION_START = VERSION_SPI;
public static final int VERSION_CURRENT = 2;
public static HashFunction hashFunctionForVersion(int version) {
if (version < VERSION_START) {
throw new IllegalArgumentException("Version " + version + " is too old, expected at least " + VERSION_START);
} else if (version > VERSION_CURRENT) {
throw new IllegalArgumentException("Version " + version + " is too new, expected at most " + VERSION_CURRENT);
}
return MurmurHash2.INSTANCE;
}
/**
* Result from {@link FuzzySet#contains(BytesRef)}:
* can never return definitively YES (always MAYBE),
* but can sometimes definitely return NO.
*/
public enum ContainsResult {
MAYBE, NO
};
private HashFunction hashFunction;
private FixedBitSet filter;
private int bloomSize;
//The sizes of BitSet used are all numbers that, when expressed in binary form,
//are all ones. This is to enable fast downsizing from one bitset to another
//by simply ANDing each set index in one bitset with the size of the target bitset
// - this provides a fast modulo of the number. Values previously accumulated in
// a large bitset and then mapped to a smaller set can be looked up using a single
// AND operation of the query term's hash rather than needing to perform a 2-step
// translation of the query term that mirrors the stored content's reprojections.
static final int usableBitSetSizes[];
static
{
usableBitSetSizes=new int[30];
int mask=1;
int size=mask;
for (int i = 0; i < usableBitSetSizes.length; i++) {
size=(size<<1)|mask;
usableBitSetSizes[i]=size;
}
}
/**
* Rounds down required maxNumberOfBits to the nearest number that is made up
* of all ones as a binary number.
* Use this method where controlling memory use is paramount.
*/
public static int getNearestSetSize(int maxNumberOfBits)
{
int result=usableBitSetSizes[0];
for (int i = 0; i < usableBitSetSizes.length; i++) {
if(usableBitSetSizes[i]<=maxNumberOfBits)
{
result=usableBitSetSizes[i];
}
}
return result;
}
/**
* Use this method to choose a set size where accuracy (low content saturation) is more important
* than deciding how much memory to throw at the problem.
* @param desiredSaturation A number between 0 and 1 expressing the % of bits set once all values have been recorded
* @return The size of the set nearest to the required size
*/
public static int getNearestSetSize(int maxNumberOfValuesExpected,
float desiredSaturation) {
// Iterate around the various scales of bitset from smallest to largest looking for the first that
// satisfies value volumes at the chosen saturation level
for (int i = 0; i < usableBitSetSizes.length; i++) {
int numSetBitsAtDesiredSaturation = (int) (usableBitSetSizes[i] * desiredSaturation);
int estimatedNumUniqueValues = getEstimatedNumberUniqueValuesAllowingForCollisions(
usableBitSetSizes[i], numSetBitsAtDesiredSaturation);
if (estimatedNumUniqueValues > maxNumberOfValuesExpected) {
return usableBitSetSizes[i];
}
}
return -1;
}
public static FuzzySet createSetBasedOnMaxMemory(int maxNumBytes)
{
int setSize=getNearestSetSize(maxNumBytes);
return new FuzzySet(new FixedBitSet(setSize+1),setSize, hashFunctionForVersion(VERSION_CURRENT));
}
public static FuzzySet createSetBasedOnQuality(int maxNumUniqueValues, float desiredMaxSaturation)
{
int setSize=getNearestSetSize(maxNumUniqueValues,desiredMaxSaturation);
return new FuzzySet(new FixedBitSet(setSize+1),setSize, hashFunctionForVersion(VERSION_CURRENT));
}
private FuzzySet(FixedBitSet filter, int bloomSize, HashFunction hashFunction) {
super();
this.filter = filter;
this.bloomSize = bloomSize;
this.hashFunction=hashFunction;
}
/**
* The main method required for a Bloom filter which, given a value determines set membership.
* Unlike a conventional set, the fuzzy set returns NO or MAYBE rather than true or false.
* @return NO or MAYBE
*/
public ContainsResult contains(BytesRef value) {
int hash = hashFunction.hash(value);
if (hash < 0) {
hash = hash * -1;
}
return mayContainValue(hash);
}
/**
* Serializes the data set to file using the following format:
*
* - FuzzySet -->FuzzySetVersion,HashFunctionName,BloomSize,
* NumBitSetWords,BitSetWordNumBitSetWords
* - HashFunctionName --> {@link DataOutput#writeString(String) String} The
* name of a ServiceProvider registered {@link HashFunction}
* - FuzzySetVersion --> {@link DataOutput#writeInt Uint32} The version number of the {@link FuzzySet} class
* - BloomSize --> {@link DataOutput#writeInt Uint32} The modulo value used
* to project hashes into the field's Bitset
* - NumBitSetWords --> {@link DataOutput#writeInt Uint32} The number of
* longs (as returned from {@link FixedBitSet#getBits})
* - BitSetWord --> {@link DataOutput#writeLong Long} A long from the array
* returned by {@link FixedBitSet#getBits}
*
* @param out Data output stream
* @throws IOException If there is a low-level I/O error
*/
public void serialize(DataOutput out) throws IOException
{
out.writeInt(VERSION_CURRENT);
out.writeInt(bloomSize);
long[] bits = filter.getBits();
out.writeInt(bits.length);
for (int i = 0; i < bits.length; i++) {
// Can't used VLong encoding because cant cope with negative numbers
// output by FixedBitSet
out.writeLong(bits[i]);
}
}
public static FuzzySet deserialize(DataInput in) throws IOException
{
int version=in.readInt();
if (version == VERSION_SPI) {
in.readString();
}
final HashFunction hashFunction = hashFunctionForVersion(version);
int bloomSize=in.readInt();
int numLongs=in.readInt();
long[]longs=new long[numLongs];
for (int i = 0; i < numLongs; i++) {
longs[i]=in.readLong();
}
FixedBitSet bits = new FixedBitSet(longs,bloomSize+1);
return new FuzzySet(bits,bloomSize,hashFunction);
}
private ContainsResult mayContainValue(int positiveHash) {
assert positiveHash >= 0;
// Bloom sizes are always base 2 and so can be ANDed for a fast modulo
int pos = positiveHash & bloomSize;
if (filter.get(pos)) {
// This term may be recorded in this index (but could be a collision)
return ContainsResult.MAYBE;
}
// definitely NOT in this segment
return ContainsResult.NO;
}
/**
* Records a value in the set. The referenced bytes are hashed and then modulo n'd where n is the
* chosen size of the internal bitset.
* @param value the key value to be hashed
* @throws IOException If there is a low-level I/O error
*/
public void addValue(BytesRef value) throws IOException {
int hash = hashFunction.hash(value);
if (hash < 0) {
hash = hash * -1;
}
// Bitmasking using bloomSize is effectively a modulo operation.
int bloomPos = hash & bloomSize;
filter.set(bloomPos);
}
/**
*
* @param targetMaxSaturation A number between 0 and 1 describing the % of bits that would ideally be set in the
* result. Lower values have better accuracy but require more space.
* @return a smaller FuzzySet or null if the current set is already over-saturated
*/
public FuzzySet downsize(float targetMaxSaturation)
{
int numBitsSet = filter.cardinality();
FixedBitSet rightSizedBitSet = filter;
int rightSizedBitSetSize = bloomSize;
//Hopefully find a smaller size bitset into which we can project accumulated values while maintaining desired saturation level
for (int i = 0; i < usableBitSetSizes.length; i++) {
int candidateBitsetSize = usableBitSetSizes[i];
float candidateSaturation = (float) numBitsSet
/ (float) candidateBitsetSize;
if (candidateSaturation <= targetMaxSaturation) {
rightSizedBitSetSize = candidateBitsetSize;
break;
}
}
// Re-project the numbers to a smaller space if necessary
if (rightSizedBitSetSize < bloomSize) {
// Reset the choice of bitset to the smaller version
rightSizedBitSet = new FixedBitSet(rightSizedBitSetSize + 1);
// Map across the bits from the large set to the smaller one
int bitIndex = 0;
do {
bitIndex = filter.nextSetBit(bitIndex);
if (bitIndex >= 0) {
// Project the larger number into a smaller one effectively
// modulo-ing by using the target bitset size as a mask
int downSizedBitIndex = bitIndex & rightSizedBitSetSize;
rightSizedBitSet.set(downSizedBitIndex);
bitIndex++;
}
} while ( (bitIndex >= 0)&&(bitIndex<=bloomSize));
} else {
return null;
}
return new FuzzySet(rightSizedBitSet,rightSizedBitSetSize, hashFunction);
}
public int getEstimatedUniqueValues()
{
return getEstimatedNumberUniqueValuesAllowingForCollisions(bloomSize, filter.cardinality());
}
// Given a set size and a the number of set bits, produces an estimate of the number of unique values recorded
public static int getEstimatedNumberUniqueValuesAllowingForCollisions(
int setSize, int numRecordedBits) {
double setSizeAsDouble = setSize;
double numRecordedBitsAsDouble = numRecordedBits;
double saturation = numRecordedBitsAsDouble / setSizeAsDouble;
double logInverseSaturation = Math.log(1 - saturation) * -1;
return (int) (setSizeAsDouble * logInverseSaturation);
}
public float getSaturation() {
int numBitsSet = filter.cardinality();
return (float) numBitsSet / (float) bloomSize;
}
}