All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.lucene.codecs.bloom.FuzzySet Maven / Gradle / Ivy

There is a newer version: 9.11.1
Show newest version
package org.apache.lucene.codecs.bloom;

/**
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
import java.io.IOException;

import org.apache.lucene.store.DataInput;
import org.apache.lucene.store.DataOutput;
import org.apache.lucene.util.BytesRef;
import org.apache.lucene.util.FixedBitSet;

/**
 * 

* A class used to represent a set of many, potentially large, values (e.g. many * long strings such as URLs), using a significantly smaller amount of memory. *

*

* The set is "lossy" in that it cannot definitively state that is does contain * a value but it can definitively say if a value is not in * the set. It can therefore be used as a Bloom Filter. *

* Another application of the set is that it can be used to perform fuzzy counting because * it can estimate reasonably accurately how many unique values are contained in the set. *

*

This class is NOT threadsafe.

*

* Internally a Bitset is used to record values and once a client has finished recording * a stream of values the {@link #downsize(float)} method can be used to create a suitably smaller set that * is sized appropriately for the number of values recorded and desired saturation levels. * *

* @lucene.experimental */ public class FuzzySet { public static final int VERSION_SPI = 1; // HashFunction used to be loaded through a SPI public static final int VERSION_START = VERSION_SPI; public static final int VERSION_CURRENT = 2; public static HashFunction hashFunctionForVersion(int version) { if (version < VERSION_START) { throw new IllegalArgumentException("Version " + version + " is too old, expected at least " + VERSION_START); } else if (version > VERSION_CURRENT) { throw new IllegalArgumentException("Version " + version + " is too new, expected at most " + VERSION_CURRENT); } return MurmurHash2.INSTANCE; } /** * Result from {@link FuzzySet#contains(BytesRef)}: * can never return definitively YES (always MAYBE), * but can sometimes definitely return NO. */ public enum ContainsResult { MAYBE, NO }; private HashFunction hashFunction; private FixedBitSet filter; private int bloomSize; //The sizes of BitSet used are all numbers that, when expressed in binary form, //are all ones. This is to enable fast downsizing from one bitset to another //by simply ANDing each set index in one bitset with the size of the target bitset // - this provides a fast modulo of the number. Values previously accumulated in // a large bitset and then mapped to a smaller set can be looked up using a single // AND operation of the query term's hash rather than needing to perform a 2-step // translation of the query term that mirrors the stored content's reprojections. static final int usableBitSetSizes[]; static { usableBitSetSizes=new int[30]; int mask=1; int size=mask; for (int i = 0; i < usableBitSetSizes.length; i++) { size=(size<<1)|mask; usableBitSetSizes[i]=size; } } /** * Rounds down required maxNumberOfBits to the nearest number that is made up * of all ones as a binary number. * Use this method where controlling memory use is paramount. */ public static int getNearestSetSize(int maxNumberOfBits) { int result=usableBitSetSizes[0]; for (int i = 0; i < usableBitSetSizes.length; i++) { if(usableBitSetSizes[i]<=maxNumberOfBits) { result=usableBitSetSizes[i]; } } return result; } /** * Use this method to choose a set size where accuracy (low content saturation) is more important * than deciding how much memory to throw at the problem. * @param desiredSaturation A number between 0 and 1 expressing the % of bits set once all values have been recorded * @return The size of the set nearest to the required size */ public static int getNearestSetSize(int maxNumberOfValuesExpected, float desiredSaturation) { // Iterate around the various scales of bitset from smallest to largest looking for the first that // satisfies value volumes at the chosen saturation level for (int i = 0; i < usableBitSetSizes.length; i++) { int numSetBitsAtDesiredSaturation = (int) (usableBitSetSizes[i] * desiredSaturation); int estimatedNumUniqueValues = getEstimatedNumberUniqueValuesAllowingForCollisions( usableBitSetSizes[i], numSetBitsAtDesiredSaturation); if (estimatedNumUniqueValues > maxNumberOfValuesExpected) { return usableBitSetSizes[i]; } } return -1; } public static FuzzySet createSetBasedOnMaxMemory(int maxNumBytes) { int setSize=getNearestSetSize(maxNumBytes); return new FuzzySet(new FixedBitSet(setSize+1),setSize, hashFunctionForVersion(VERSION_CURRENT)); } public static FuzzySet createSetBasedOnQuality(int maxNumUniqueValues, float desiredMaxSaturation) { int setSize=getNearestSetSize(maxNumUniqueValues,desiredMaxSaturation); return new FuzzySet(new FixedBitSet(setSize+1),setSize, hashFunctionForVersion(VERSION_CURRENT)); } private FuzzySet(FixedBitSet filter, int bloomSize, HashFunction hashFunction) { super(); this.filter = filter; this.bloomSize = bloomSize; this.hashFunction=hashFunction; } /** * The main method required for a Bloom filter which, given a value determines set membership. * Unlike a conventional set, the fuzzy set returns NO or MAYBE rather than true or false. * @return NO or MAYBE */ public ContainsResult contains(BytesRef value) { int hash = hashFunction.hash(value); if (hash < 0) { hash = hash * -1; } return mayContainValue(hash); } /** * Serializes the data set to file using the following format: *
    *
  • FuzzySet -->FuzzySetVersion,HashFunctionName,BloomSize, * NumBitSetWords,BitSetWordNumBitSetWords
  • *
  • HashFunctionName --> {@link DataOutput#writeString(String) String} The * name of a ServiceProvider registered {@link HashFunction}
  • *
  • FuzzySetVersion --> {@link DataOutput#writeInt Uint32} The version number of the {@link FuzzySet} class
  • *
  • BloomSize --> {@link DataOutput#writeInt Uint32} The modulo value used * to project hashes into the field's Bitset
  • *
  • NumBitSetWords --> {@link DataOutput#writeInt Uint32} The number of * longs (as returned from {@link FixedBitSet#getBits})
  • *
  • BitSetWord --> {@link DataOutput#writeLong Long} A long from the array * returned by {@link FixedBitSet#getBits}
  • *
* @param out Data output stream * @throws IOException If there is a low-level I/O error */ public void serialize(DataOutput out) throws IOException { out.writeInt(VERSION_CURRENT); out.writeInt(bloomSize); long[] bits = filter.getBits(); out.writeInt(bits.length); for (int i = 0; i < bits.length; i++) { // Can't used VLong encoding because cant cope with negative numbers // output by FixedBitSet out.writeLong(bits[i]); } } public static FuzzySet deserialize(DataInput in) throws IOException { int version=in.readInt(); if (version == VERSION_SPI) { in.readString(); } final HashFunction hashFunction = hashFunctionForVersion(version); int bloomSize=in.readInt(); int numLongs=in.readInt(); long[]longs=new long[numLongs]; for (int i = 0; i < numLongs; i++) { longs[i]=in.readLong(); } FixedBitSet bits = new FixedBitSet(longs,bloomSize+1); return new FuzzySet(bits,bloomSize,hashFunction); } private ContainsResult mayContainValue(int positiveHash) { assert positiveHash >= 0; // Bloom sizes are always base 2 and so can be ANDed for a fast modulo int pos = positiveHash & bloomSize; if (filter.get(pos)) { // This term may be recorded in this index (but could be a collision) return ContainsResult.MAYBE; } // definitely NOT in this segment return ContainsResult.NO; } /** * Records a value in the set. The referenced bytes are hashed and then modulo n'd where n is the * chosen size of the internal bitset. * @param value the key value to be hashed * @throws IOException If there is a low-level I/O error */ public void addValue(BytesRef value) throws IOException { int hash = hashFunction.hash(value); if (hash < 0) { hash = hash * -1; } // Bitmasking using bloomSize is effectively a modulo operation. int bloomPos = hash & bloomSize; filter.set(bloomPos); } /** * * @param targetMaxSaturation A number between 0 and 1 describing the % of bits that would ideally be set in the * result. Lower values have better accuracy but require more space. * @return a smaller FuzzySet or null if the current set is already over-saturated */ public FuzzySet downsize(float targetMaxSaturation) { int numBitsSet = filter.cardinality(); FixedBitSet rightSizedBitSet = filter; int rightSizedBitSetSize = bloomSize; //Hopefully find a smaller size bitset into which we can project accumulated values while maintaining desired saturation level for (int i = 0; i < usableBitSetSizes.length; i++) { int candidateBitsetSize = usableBitSetSizes[i]; float candidateSaturation = (float) numBitsSet / (float) candidateBitsetSize; if (candidateSaturation <= targetMaxSaturation) { rightSizedBitSetSize = candidateBitsetSize; break; } } // Re-project the numbers to a smaller space if necessary if (rightSizedBitSetSize < bloomSize) { // Reset the choice of bitset to the smaller version rightSizedBitSet = new FixedBitSet(rightSizedBitSetSize + 1); // Map across the bits from the large set to the smaller one int bitIndex = 0; do { bitIndex = filter.nextSetBit(bitIndex); if (bitIndex >= 0) { // Project the larger number into a smaller one effectively // modulo-ing by using the target bitset size as a mask int downSizedBitIndex = bitIndex & rightSizedBitSetSize; rightSizedBitSet.set(downSizedBitIndex); bitIndex++; } } while ( (bitIndex >= 0)&&(bitIndex<=bloomSize)); } else { return null; } return new FuzzySet(rightSizedBitSet,rightSizedBitSetSize, hashFunction); } public int getEstimatedUniqueValues() { return getEstimatedNumberUniqueValuesAllowingForCollisions(bloomSize, filter.cardinality()); } // Given a set size and a the number of set bits, produces an estimate of the number of unique values recorded public static int getEstimatedNumberUniqueValuesAllowingForCollisions( int setSize, int numRecordedBits) { double setSizeAsDouble = setSize; double numRecordedBitsAsDouble = numRecordedBits; double saturation = numRecordedBitsAsDouble / setSizeAsDouble; double logInverseSaturation = Math.log(1 - saturation) * -1; return (int) (setSizeAsDouble * logInverseSaturation); } public float getSaturation() { int numBitsSet = filter.cardinality(); return (float) numBitsSet / (float) bloomSize; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy