All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.lucene.misc.SweetSpotSimilarity Maven / Gradle / Ivy

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.lucene.misc;

import org.apache.lucene.search.similarities.ClassicSimilarity;
import org.apache.lucene.index.FieldInvertState;

/**
 * 

* A similarity with a lengthNorm that provides for a "plateau" of * equally good lengths, and tf helper functions. *

*

* For lengthNorm, A min/max can be specified to define the * plateau of lengths that should all have a norm of 1.0. * Below the min, and above the max the lengthNorm drops off in a * sqrt function. *

*

* For tf, baselineTf and hyperbolicTf functions are provided, which * subclasses can choose between. *

* * @see A Gnuplot file used to generate some of the visualizations refrenced from each function. */ public class SweetSpotSimilarity extends ClassicSimilarity { private int ln_min = 1; private int ln_max = 1; private float ln_steep = 0.5f; private float tf_base = 0.0f; private float tf_min = 0.0f; private float tf_hyper_min = 0.0f; private float tf_hyper_max = 2.0f; private double tf_hyper_base = 1.3d; private float tf_hyper_xoffset = 10.0f; public SweetSpotSimilarity() { super(); } /** * Sets the baseline and minimum function variables for baselineTf * * @see #baselineTf */ public void setBaselineTfFactors(float base, float min) { tf_min = min; tf_base = base; } /** * Sets the function variables for the hyperbolicTf functions * * @param min the minimum tf value to ever be returned (default: 0.0) * @param max the maximum tf value to ever be returned (default: 2.0) * @param base the base value to be used in the exponential for the hyperbolic function (default: 1.3) * @param xoffset the midpoint of the hyperbolic function (default: 10.0) * @see #hyperbolicTf */ public void setHyperbolicTfFactors(float min, float max, double base, float xoffset) { tf_hyper_min = min; tf_hyper_max = max; tf_hyper_base = base; tf_hyper_xoffset = xoffset; } /** * Sets the default function variables used by lengthNorm when no field * specific variables have been set. * * @see #computeLengthNorm */ public void setLengthNormFactors(int min, int max, float steepness, boolean discountOverlaps) { this.ln_min = min; this.ln_max = max; this.ln_steep = steepness; this.discountOverlaps = discountOverlaps; } /** * Implemented as state.getBoost() * * computeLengthNorm(numTokens) where * numTokens does not count overlap tokens if * discountOverlaps is true by default or true for this * specific field. */ @Override public float lengthNorm(FieldInvertState state) { final int numTokens; if (discountOverlaps) numTokens = state.getLength() - state.getNumOverlap(); else numTokens = state.getLength(); return state.getBoost() * computeLengthNorm(numTokens); } /** * Implemented as: * * 1/sqrt( steepness * (abs(x-min) + abs(x-max) - (max-min)) + 1 ) * . * *

* This degrades to 1/sqrt(x) when min and max are both 1 and * steepness is 0.5 *

* *

* :TODO: potential optimization is to just flat out return 1.0f if numTerms * is between min and max. *

* * @see #setLengthNormFactors * @see An SVG visualization of this function */ public float computeLengthNorm(int numTerms) { final int l = ln_min; final int h = ln_max; final float s = ln_steep; return (float) (1.0f / Math.sqrt ( ( s * (float)(Math.abs(numTerms - l) + Math.abs(numTerms - h) - (h-l)) ) + 1.0f ) ); } /** * Delegates to baselineTf * * @see #baselineTf */ @Override public float tf(float freq) { return baselineTf(freq); } /** * Implemented as: * * (x <= min) ? base : sqrt(x+(base**2)-min) * * ...but with a special case check for 0. *

* This degrates to sqrt(x) when min and base are both 0 *

* * @see #setBaselineTfFactors * @see An SVG visualization of this function */ public float baselineTf(float freq) { if (0.0f == freq) return 0.0f; return (freq <= tf_min) ? tf_base : (float)Math.sqrt(freq + (tf_base * tf_base) - tf_min); } /** * Uses a hyperbolic tangent function that allows for a hard max... * * * tf(x)=min+(max-min)/2*(((base**(x-xoffset)-base**-(x-xoffset))/(base**(x-xoffset)+base**-(x-xoffset)))+1) * * *

* This code is provided as a convenience for subclasses that want * to use a hyperbolic tf function. *

* * @see #setHyperbolicTfFactors * @see An SVG visualization of this function */ public float hyperbolicTf(float freq) { if (0.0f == freq) return 0.0f; final float min = tf_hyper_min; final float max = tf_hyper_max; final double base = tf_hyper_base; final float xoffset = tf_hyper_xoffset; final double x = (double)(freq - xoffset); final float result = min + (float)( (max-min) / 2.0f * ( ( ( Math.pow(base,x) - Math.pow(base,-x) ) / ( Math.pow(base,x) + Math.pow(base,-x) ) ) + 1.0d ) ); return Float.isNaN(result) ? max : result; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy