org.apache.lucene.search.TermAutomatonQuery Maven / Gradle / Ivy
Show all versions of lucene-sandbox Show documentation
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.lucene.search;
import java.io.IOException;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Set;
import org.apache.lucene.index.IndexReader;
import org.apache.lucene.index.IndexReaderContext;
import org.apache.lucene.index.LeafReaderContext;
import org.apache.lucene.index.PostingsEnum;
import org.apache.lucene.index.ReaderUtil;
import org.apache.lucene.index.Term;
import org.apache.lucene.index.TermState;
import org.apache.lucene.index.TermStates;
import org.apache.lucene.index.TermsEnum;
import org.apache.lucene.search.similarities.Similarity;
import org.apache.lucene.search.spans.SpanNearQuery;
import org.apache.lucene.util.Accountable;
import org.apache.lucene.util.BytesRef;
import org.apache.lucene.util.IntsRef;
import org.apache.lucene.util.RamUsageEstimator;
import org.apache.lucene.util.automaton.Automaton;
import org.apache.lucene.util.automaton.Operations;
import org.apache.lucene.util.automaton.Transition;
import static org.apache.lucene.util.automaton.Operations.DEFAULT_MAX_DETERMINIZED_STATES;
// TODO
// - compare perf to PhraseQuery exact and sloppy
// - optimize: find terms that are in fact MUST (because all paths
// through the A include that term)
// - if we ever store posLength in the index, it would be easy[ish]
// to take it into account here
/** A proximity query that lets you express an automaton, whose
* transitions are terms, to match documents. This is a generalization
* of other proximity queries like {@link PhraseQuery}, {@link
* MultiPhraseQuery} and {@link SpanNearQuery}. It is likely
* slow, since it visits any document having any of the terms (i.e. it
* acts like a disjunction, not a conjunction like {@link
* PhraseQuery}), and then it must merge-sort all positions within each
* document to test whether/how many times the automaton matches.
*
* After creating the query, use {@link #createState}, {@link
* #setAccept}, {@link #addTransition} and {@link #addAnyTransition} to
* build up the automaton. Once you are done, call {@link #finish} and
* then execute the query.
*
*
This code is very new and likely has exciting bugs!
*
* @lucene.experimental */
public class TermAutomatonQuery extends Query implements Accountable {
private static final long BASE_RAM_BYTES = RamUsageEstimator.shallowSizeOfInstance(TermAutomatonQuery.class);
private final String field;
private final Automaton.Builder builder;
Automaton det;
private final Map termToID = new HashMap<>();
private final Map idToTerm = new HashMap<>();
private int anyTermID = -1;
public TermAutomatonQuery(String field) {
this.field = field;
this.builder = new Automaton.Builder();
}
/** Returns a new state; state 0 is always the initial state. */
public int createState() {
return builder.createState();
}
/** Marks the specified state as accept or not. */
public void setAccept(int state, boolean accept) {
builder.setAccept(state, accept);
}
/** Adds a transition to the automaton. */
public void addTransition(int source, int dest, String term) {
addTransition(source, dest, new BytesRef(term));
}
/** Adds a transition to the automaton. */
public void addTransition(int source, int dest, BytesRef term) {
if (term == null) {
throw new NullPointerException("term should not be null");
}
builder.addTransition(source, dest, getTermID(term));
}
/** Adds a transition matching any term. */
public void addAnyTransition(int source, int dest) {
builder.addTransition(source, dest, getTermID(null));
}
/** Call this once you are done adding states/transitions. */
public void finish() {
finish(DEFAULT_MAX_DETERMINIZED_STATES);
}
/**
* Call this once you are done adding states/transitions.
* @param maxDeterminizedStates Maximum number of states created when
* determinizing the automaton. Higher numbers allow this operation to
* consume more memory but allow more complex automatons.
*/
public void finish(int maxDeterminizedStates) {
Automaton automaton = builder.finish();
// System.out.println("before det:\n" + automaton.toDot());
Transition t = new Transition();
// TODO: should we add "eps back to initial node" for all states,
// and det that? then we don't need to revisit initial node at
// every position? but automaton could blow up? And, this makes it
// harder to skip useless positions at search time?
if (anyTermID != -1) {
// Make sure there are no leading or trailing ANY:
int count = automaton.initTransition(0, t);
for(int i=0;i= t.min && anyTermID <= t.max) {
throw new IllegalStateException("automaton cannot lead with an ANY transition");
}
}
int numStates = automaton.getNumStates();
for(int i=0;i= t.min && anyTermID <= t.max) {
throw new IllegalStateException("automaton cannot end with an ANY transition");
}
}
}
int termCount = termToID.size();
// We have to carefully translate these transitions so automaton
// realizes they also match all other terms:
Automaton newAutomaton = new Automaton();
for(int i=0;i termStates = new HashMap<>();
for (Map.Entry ent : termToID.entrySet()) {
if (ent.getKey() != null) {
termStates.put(ent.getValue(), TermStates.build(context, new Term(field, ent.getKey()), scoreMode.needsScores()));
}
}
return new TermAutomatonWeight(det, searcher, termStates, boost);
}
@Override
public String toString(String field) {
// TODO: what really am I supposed to do with the incoming field...
StringBuilder sb = new StringBuilder();
sb.append("TermAutomatonQuery(field=");
sb.append(this.field);
if (det != null) {
sb.append(" numStates=");
sb.append(det.getNumStates());
}
sb.append(')');
return sb.toString();
}
private int getTermID(BytesRef term) {
Integer id = termToID.get(term);
if (id == null) {
id = termToID.size();
if (term != null) {
term = BytesRef.deepCopyOf(term);
}
termToID.put(term, id);
idToTerm.put(id, term);
if (term == null) {
anyTermID = id;
}
}
return id;
}
/** Returns true iff o
is equal to this. */
@Override
public boolean equals(Object other) {
return sameClassAs(other) &&
equalsTo(getClass().cast(other));
}
private static boolean checkFinished(TermAutomatonQuery q) {
if (q.det == null) {
throw new IllegalStateException("Call finish first on: " + q);
}
return true;
}
private boolean equalsTo(TermAutomatonQuery other) {
return checkFinished(this) &&
checkFinished(other) &&
other == this;
}
@Override
public int hashCode() {
checkFinished(this);
// LUCENE-7295: this used to be very awkward toDot() call; it is safer to assume
// that no two instances are equivalent instead (until somebody finds a better way to check
// on automaton equivalence quickly).
return System.identityHashCode(this);
}
@Override
public long ramBytesUsed() {
return BASE_RAM_BYTES +
RamUsageEstimator.sizeOfObject(builder) +
RamUsageEstimator.sizeOfObject(det) +
RamUsageEstimator.sizeOfObject(field) +
RamUsageEstimator.sizeOfObject(idToTerm) +
RamUsageEstimator.sizeOfObject(termToID);
}
/** Returns the dot (graphviz) representation of this automaton.
* This is extremely useful for visualizing the automaton. */
public String toDot() {
// TODO: refactor & share with Automaton.toDot!
StringBuilder b = new StringBuilder();
b.append("digraph Automaton {\n");
b.append(" rankdir = LR\n");
final int numStates = det.getNumStates();
if (numStates > 0) {
b.append(" initial [shape=plaintext,label=\"0\"]\n");
b.append(" initial -> 0\n");
}
Transition t = new Transition();
for(int state=0;state= t.min;
for(int j=t.min;j<=t.max;j++) {
b.append(" ");
b.append(state);
b.append(" -> ");
b.append(t.dest);
b.append(" [label=\"");
if (j == anyTermID) {
b.append('*');
} else {
b.append(idToTerm.get(j).utf8ToString());
}
b.append("\"]\n");
}
}
}
b.append('}');
return b.toString();
}
// TODO: should we impl rewrite to return BooleanQuery of PhraseQuery,
// when 1) automaton is finite, 2) doesn't use ANY transition, 3) is
// "small enough"?
static class EnumAndScorer {
public final int termID;
public final PostingsEnum posEnum;
// How many positions left in the current document:
public int posLeft;
// Current position
public int pos;
public EnumAndScorer(int termID, PostingsEnum posEnum) {
this.termID = termID;
this.posEnum = posEnum;
}
}
final class TermAutomatonWeight extends Weight {
final Automaton automaton;
private final Map termStates;
private final Similarity.SimScorer stats;
private final Similarity similarity;
public TermAutomatonWeight(Automaton automaton, IndexSearcher searcher, Map termStates, float boost) throws IOException {
super(TermAutomatonQuery.this);
this.automaton = automaton;
this.termStates = termStates;
this.similarity = searcher.getSimilarity();
List allTermStats = new ArrayList<>();
for(Map.Entry ent : idToTerm.entrySet()) {
Integer termID = ent.getKey();
if (ent.getValue() != null) {
TermStates ts = termStates.get(termID);
if (ts.docFreq() > 0) {
allTermStats.add(searcher.termStatistics(new Term(field, ent.getValue()), ts.docFreq(), ts.totalTermFreq()));
}
}
}
if (allTermStats.isEmpty()) {
stats = null; // no terms matched at all, will not use sim
} else {
stats = similarity.scorer(boost, searcher.collectionStatistics(field),
allTermStats.toArray(new TermStatistics[allTermStats.size()]));
}
}
@Override
public void extractTerms(Set terms) {
for(BytesRef text : termToID.keySet()) {
if (text != null) {
terms.add(new Term(field, text));
}
}
}
@Override
public String toString() {
return "weight(" + TermAutomatonQuery.this + ")";
}
@Override
public Scorer scorer(LeafReaderContext context) throws IOException {
// Initialize the enums; null for a given slot means that term didn't appear in this reader
EnumAndScorer[] enums = new EnumAndScorer[idToTerm.size()];
boolean any = false;
for(Map.Entry ent : termStates.entrySet()) {
TermStates termStates = ent.getValue();
assert termStates.wasBuiltFor(ReaderUtil.getTopLevelContext(context)) : "The top-reader used to create Weight is not the same as the current reader's top-reader (" + ReaderUtil.getTopLevelContext(context);
BytesRef term = idToTerm.get(ent.getKey());
TermState state = termStates.get(context);
if (state != null) {
TermsEnum termsEnum = context.reader().terms(field).iterator();
termsEnum.seekExact(term, state);
enums[ent.getKey()] = new EnumAndScorer(ent.getKey(), termsEnum.postings(null, PostingsEnum.POSITIONS));
any = true;
}
}
if (any) {
return new TermAutomatonScorer(this, enums, anyTermID, idToTerm, new LeafSimScorer(stats, context.reader(), field, true));
} else {
return null;
}
}
@Override
public boolean isCacheable(LeafReaderContext ctx) {
return true;
}
@Override
public Explanation explain(LeafReaderContext context, int doc) throws IOException {
// TODO
return null;
}
}
public Query rewrite(IndexReader reader) throws IOException {
if (Operations.isEmpty(det)) {
return new MatchNoDocsQuery();
}
IntsRef single = Operations.getSingleton(det);
if (single != null && single.length == 1) {
return new TermQuery(new Term(field, idToTerm.get(single.ints[single.offset])));
}
// TODO: can PhraseQuery really handle multiple terms at the same position? If so, why do we even have MultiPhraseQuery?
// Try for either PhraseQuery or MultiPhraseQuery, which only works when the automaton is a sausage:
MultiPhraseQuery.Builder mpq = new MultiPhraseQuery.Builder();
PhraseQuery.Builder pq = new PhraseQuery.Builder();
Transition t = new Transition();
int state = 0;
int pos = 0;
query:
while (true) {
int count = det.initTransition(state, t);
if (count == 0) {
if (det.isAccept(state) == false) {
mpq = null;
pq = null;
}
break;
} else if (det.isAccept(state)) {
mpq = null;
pq = null;
break;
}
int dest = -1;
List terms = new ArrayList<>();
boolean matchesAny = false;
for(int i=0;i= t.min && anyTermID <= t.max;
if (matchesAny == false) {
for(int termID=t.min;termID<=t.max;termID++) {
terms.add(new Term(field, idToTerm.get(termID)));
}
}
}
if (matchesAny == false) {
mpq.add(terms.toArray(new Term[terms.size()]), pos);
if (pq != null) {
if (terms.size() == 1) {
pq.add(terms.get(0), pos);
} else {
pq = null;
}
}
}
state = dest;
pos++;
}
if (pq != null) {
return pq.build();
} else if (mpq != null) {
return mpq.build();
}
// TODO: we could maybe also rewrite to union of PhraseQuery (pull all finite strings) if it's "worth it"?
return this;
}
@Override
public void visit(QueryVisitor visitor) {
if (visitor.acceptField(field) == false) {
return;
}
QueryVisitor v = visitor.getSubVisitor(BooleanClause.Occur.SHOULD, this);
for (BytesRef term : termToID.keySet()) {
v.consumeTerms(this, new Term(field, term));
}
}
}