All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.lucene.sandbox.search.CombinedFieldQuery Maven / Gradle / Ivy

There is a newer version: 10.0.0
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.lucene.sandbox.search;

import java.io.IOException;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.HashMap;
import java.util.HashSet;
import java.util.List;
import java.util.Map;
import java.util.Objects;
import java.util.Set;
import java.util.TreeMap;
import org.apache.lucene.index.FieldInfo;
import org.apache.lucene.index.FieldInfos;
import org.apache.lucene.index.IndexReader;
import org.apache.lucene.index.LeafReaderContext;
import org.apache.lucene.index.PostingsEnum;
import org.apache.lucene.index.Term;
import org.apache.lucene.index.TermState;
import org.apache.lucene.index.TermStates;
import org.apache.lucene.index.TermsEnum;
import org.apache.lucene.search.BooleanClause;
import org.apache.lucene.search.BooleanQuery;
import org.apache.lucene.search.CollectionStatistics;
import org.apache.lucene.search.DisiPriorityQueue;
import org.apache.lucene.search.DisiWrapper;
import org.apache.lucene.search.DisjunctionDISIApproximation;
import org.apache.lucene.search.DocIdSetIterator;
import org.apache.lucene.search.Explanation;
import org.apache.lucene.search.IndexSearcher;
import org.apache.lucene.search.LeafSimScorer;
import org.apache.lucene.search.Matches;
import org.apache.lucene.search.Query;
import org.apache.lucene.search.QueryVisitor;
import org.apache.lucene.search.ScoreMode;
import org.apache.lucene.search.Scorer;
import org.apache.lucene.search.TermQuery;
import org.apache.lucene.search.TermScorer;
import org.apache.lucene.search.TermStatistics;
import org.apache.lucene.search.Weight;
import org.apache.lucene.search.similarities.BM25Similarity;
import org.apache.lucene.search.similarities.DFRSimilarity;
import org.apache.lucene.search.similarities.Similarity;
import org.apache.lucene.search.similarities.SimilarityBase;
import org.apache.lucene.util.Accountable;
import org.apache.lucene.util.BytesRef;
import org.apache.lucene.util.RamUsageEstimator;
import org.apache.lucene.util.SmallFloat;

/**
 * A {@link Query} that treats multiple fields as a single stream and scores terms as if you had
 * indexed them as a single term in a single field.
 *
 * 

The query works as follows: * *

    *
  1. Given a list of fields and weights, it pretends there is a synthetic combined field where * all terms have been indexed. It computes new term and collection statistics for this * combined field. *
  2. It uses a disjunction iterator and {@link IndexSearcher#getSimilarity} to score documents. *
* *

In order for a similarity to be compatible, {@link Similarity#computeNorm} must be additive: * the norm of the combined field is the sum of norms for each individual field. The norms must also * be encoded using {@link SmallFloat#intToByte4}. These requirements hold for all similarities that * compute norms the same way as {@link SimilarityBase#computeNorm}, which includes {@link * BM25Similarity} and {@link DFRSimilarity}. Per-field similarities are not supported. * *

The query also requires that either all fields or no fields have norms enabled. Having only * some fields with norms enabled can result in errors. * *

The scoring is based on BM25F's simple formula described in: * http://www.staff.city.ac.uk/~sb317/papers/foundations_bm25_review.pdf. This query implements the * same approach but allows other similarities besides {@link * org.apache.lucene.search.similarities.BM25Similarity}. * * @lucene.experimental */ public final class CombinedFieldQuery extends Query implements Accountable { private static final long BASE_RAM_BYTES = RamUsageEstimator.shallowSizeOfInstance(CombinedFieldQuery.class); /** A builder for {@link CombinedFieldQuery}. */ public static class Builder { private final Map fieldAndWeights = new HashMap<>(); private final Set termsSet = new HashSet<>(); /** * Adds a field to this builder. * * @param field The field name. */ public Builder addField(String field) { return addField(field, 1f); } /** * Adds a field to this builder. * * @param field The field name. * @param weight The weight associated to this field. */ public Builder addField(String field, float weight) { if (weight < 1) { throw new IllegalArgumentException("weight must be greater or equal to 1"); } fieldAndWeights.put(field, new FieldAndWeight(field, weight)); return this; } /** Adds a term to this builder. */ public Builder addTerm(BytesRef term) { if (termsSet.size() > IndexSearcher.getMaxClauseCount()) { throw new IndexSearcher.TooManyClauses(); } termsSet.add(term); return this; } /** Builds the {@link CombinedFieldQuery}. */ public CombinedFieldQuery build() { int size = fieldAndWeights.size() * termsSet.size(); if (size > IndexSearcher.getMaxClauseCount()) { throw new IndexSearcher.TooManyClauses(); } BytesRef[] terms = termsSet.toArray(new BytesRef[0]); return new CombinedFieldQuery(new TreeMap<>(fieldAndWeights), terms); } } static class FieldAndWeight { final String field; final float weight; FieldAndWeight(String field, float weight) { this.field = field; this.weight = weight; } @Override public boolean equals(Object o) { if (this == o) return true; if (o == null || getClass() != o.getClass()) return false; FieldAndWeight that = (FieldAndWeight) o; return Float.compare(that.weight, weight) == 0 && Objects.equals(field, that.field); } @Override public int hashCode() { return Objects.hash(field, weight); } } // sorted map for fields. private final TreeMap fieldAndWeights; // array of terms, sorted. private final BytesRef[] terms; // array of terms per field, sorted private final Term[] fieldTerms; private final long ramBytesUsed; private CombinedFieldQuery(TreeMap fieldAndWeights, BytesRef[] terms) { this.fieldAndWeights = fieldAndWeights; this.terms = terms; int numFieldTerms = fieldAndWeights.size() * terms.length; if (numFieldTerms > IndexSearcher.getMaxClauseCount()) { throw new IndexSearcher.TooManyClauses(); } this.fieldTerms = new Term[numFieldTerms]; Arrays.sort(terms); int pos = 0; for (String field : fieldAndWeights.keySet()) { for (BytesRef term : terms) { fieldTerms[pos++] = new Term(field, term); } } this.ramBytesUsed = BASE_RAM_BYTES + RamUsageEstimator.sizeOfObject(fieldAndWeights) + RamUsageEstimator.sizeOfObject(fieldTerms) + RamUsageEstimator.sizeOfObject(terms); } public List getTerms() { return Collections.unmodifiableList(Arrays.asList(fieldTerms)); } @Override public String toString(String field) { StringBuilder builder = new StringBuilder("CombinedFieldQuery(("); int pos = 0; for (FieldAndWeight fieldWeight : fieldAndWeights.values()) { if (pos++ != 0) { builder.append(" "); } builder.append(fieldWeight.field); if (fieldWeight.weight != 1f) { builder.append("^"); builder.append(fieldWeight.weight); } } builder.append(")("); pos = 0; for (BytesRef term : terms) { if (pos++ != 0) { builder.append(" "); } builder.append(term.utf8ToString()); } builder.append("))"); return builder.toString(); } @Override public boolean equals(Object o) { if (this == o) return true; if (sameClassAs(o) == false) return false; CombinedFieldQuery that = (CombinedFieldQuery) o; return Objects.equals(fieldAndWeights, that.fieldAndWeights) && Arrays.equals(terms, that.terms); } @Override public int hashCode() { int result = classHash(); result = 31 * result + Objects.hash(fieldAndWeights); result = 31 * result + Arrays.hashCode(terms); return result; } @Override public long ramBytesUsed() { return ramBytesUsed; } @Override public Query rewrite(IndexReader reader) throws IOException { if (terms.length == 0 || fieldAndWeights.isEmpty()) { return new BooleanQuery.Builder().build(); } return this; } @Override public void visit(QueryVisitor visitor) { Term[] selectedTerms = Arrays.stream(fieldTerms).filter(t -> visitor.acceptField(t.field())).toArray(Term[]::new); if (selectedTerms.length > 0) { QueryVisitor v = visitor.getSubVisitor(BooleanClause.Occur.SHOULD, this); v.consumeTerms(this, selectedTerms); } } private BooleanQuery rewriteToBoolean() { // rewrite to a simple disjunction if the score is not needed. BooleanQuery.Builder bq = new BooleanQuery.Builder(); for (Term term : fieldTerms) { bq.add(new TermQuery(term), BooleanClause.Occur.SHOULD); } return bq.build(); } @Override public Weight createWeight(IndexSearcher searcher, ScoreMode scoreMode, float boost) throws IOException { validateConsistentNorms(searcher.getIndexReader()); if (scoreMode.needsScores()) { return new CombinedFieldWeight(this, searcher, scoreMode, boost); } else { // rewrite to a simple disjunction if the score is not needed. Query bq = rewriteToBoolean(); return searcher.rewrite(bq).createWeight(searcher, ScoreMode.COMPLETE_NO_SCORES, boost); } } private void validateConsistentNorms(IndexReader reader) { boolean allFieldsHaveNorms = true; boolean noFieldsHaveNorms = true; for (LeafReaderContext context : reader.leaves()) { FieldInfos fieldInfos = context.reader().getFieldInfos(); for (String field : fieldAndWeights.keySet()) { FieldInfo fieldInfo = fieldInfos.fieldInfo(field); if (fieldInfo != null) { allFieldsHaveNorms &= fieldInfo.hasNorms(); noFieldsHaveNorms &= fieldInfo.omitsNorms(); } } } if (allFieldsHaveNorms == false && noFieldsHaveNorms == false) { throw new IllegalArgumentException( getClass().getSimpleName() + " requires norms to be consistent across fields: some fields cannot " + " have norms enabled, while others have norms disabled"); } } class CombinedFieldWeight extends Weight { private final IndexSearcher searcher; private final TermStates[] termStates; private final Similarity.SimScorer simWeight; CombinedFieldWeight(Query query, IndexSearcher searcher, ScoreMode scoreMode, float boost) throws IOException { super(query); assert scoreMode.needsScores(); this.searcher = searcher; long docFreq = 0; long totalTermFreq = 0; termStates = new TermStates[fieldTerms.length]; for (int i = 0; i < termStates.length; i++) { FieldAndWeight field = fieldAndWeights.get(fieldTerms[i].field()); TermStates ts = TermStates.build(searcher.getTopReaderContext(), fieldTerms[i], true); termStates[i] = ts; if (ts.docFreq() > 0) { TermStatistics termStats = searcher.termStatistics(fieldTerms[i], ts.docFreq(), ts.totalTermFreq()); docFreq = Math.max(termStats.docFreq(), docFreq); totalTermFreq += (double) field.weight * termStats.totalTermFreq(); } } if (docFreq > 0) { CollectionStatistics pseudoCollectionStats = mergeCollectionStatistics(searcher); TermStatistics pseudoTermStatistics = new TermStatistics(new BytesRef("pseudo_term"), docFreq, Math.max(1, totalTermFreq)); this.simWeight = searcher.getSimilarity().scorer(boost, pseudoCollectionStats, pseudoTermStatistics); } else { this.simWeight = null; } } private CollectionStatistics mergeCollectionStatistics(IndexSearcher searcher) throws IOException { long maxDoc = 0; long docCount = 0; long sumTotalTermFreq = 0; long sumDocFreq = 0; for (FieldAndWeight fieldWeight : fieldAndWeights.values()) { CollectionStatistics collectionStats = searcher.collectionStatistics(fieldWeight.field); if (collectionStats != null) { maxDoc = Math.max(collectionStats.maxDoc(), maxDoc); docCount = Math.max(collectionStats.docCount(), docCount); sumDocFreq = Math.max(collectionStats.sumDocFreq(), sumDocFreq); sumTotalTermFreq += (double) fieldWeight.weight * collectionStats.sumTotalTermFreq(); } } return new CollectionStatistics( "pseudo_field", maxDoc, docCount, sumTotalTermFreq, sumDocFreq); } @Override public Matches matches(LeafReaderContext context, int doc) throws IOException { Weight weight = searcher.rewrite(rewriteToBoolean()).createWeight(searcher, ScoreMode.COMPLETE, 1f); return weight.matches(context, doc); } @Override public Explanation explain(LeafReaderContext context, int doc) throws IOException { Scorer scorer = scorer(context); if (scorer != null) { int newDoc = scorer.iterator().advance(doc); if (newDoc == doc) { assert scorer instanceof CombinedFieldScorer; float freq = ((CombinedFieldScorer) scorer).freq(); MultiNormsLeafSimScorer docScorer = new MultiNormsLeafSimScorer( simWeight, context.reader(), fieldAndWeights.values(), true); Explanation freqExplanation = Explanation.match(freq, "termFreq=" + freq); Explanation scoreExplanation = docScorer.explain(doc, freqExplanation); return Explanation.match( scoreExplanation.getValue(), "weight(" + getQuery() + " in " + doc + "), result of:", scoreExplanation); } } return Explanation.noMatch("no matching term"); } @Override public Scorer scorer(LeafReaderContext context) throws IOException { List iterators = new ArrayList<>(); List fields = new ArrayList<>(); for (int i = 0; i < fieldTerms.length; i++) { TermState state = termStates[i].get(context); if (state != null) { TermsEnum termsEnum = context.reader().terms(fieldTerms[i].field()).iterator(); termsEnum.seekExact(fieldTerms[i].bytes(), state); PostingsEnum postingsEnum = termsEnum.postings(null, PostingsEnum.FREQS); iterators.add(postingsEnum); fields.add(fieldAndWeights.get(fieldTerms[i].field())); } } if (iterators.isEmpty()) { return null; } MultiNormsLeafSimScorer scoringSimScorer = new MultiNormsLeafSimScorer(simWeight, context.reader(), fieldAndWeights.values(), true); LeafSimScorer nonScoringSimScorer = new LeafSimScorer(simWeight, context.reader(), "pseudo_field", false); // we use termscorers + disjunction as an impl detail DisiPriorityQueue queue = new DisiPriorityQueue(iterators.size()); for (int i = 0; i < iterators.size(); i++) { float weight = fields.get(i).weight; queue.add( new WeightedDisiWrapper( new TermScorer(this, iterators.get(i), nonScoringSimScorer), weight)); } // Even though it is called approximation, it is accurate since none of // the sub iterators are two-phase iterators. DocIdSetIterator iterator = new DisjunctionDISIApproximation(queue); return new CombinedFieldScorer(this, queue, iterator, scoringSimScorer); } @Override public boolean isCacheable(LeafReaderContext ctx) { return false; } } private static class WeightedDisiWrapper extends DisiWrapper { final float weight; WeightedDisiWrapper(Scorer scorer, float weight) { super(scorer); this.weight = weight; } float freq() throws IOException { return weight * ((PostingsEnum) iterator).freq(); } } private static class CombinedFieldScorer extends Scorer { private final DisiPriorityQueue queue; private final DocIdSetIterator iterator; private final MultiNormsLeafSimScorer simScorer; CombinedFieldScorer( Weight weight, DisiPriorityQueue queue, DocIdSetIterator iterator, MultiNormsLeafSimScorer simScorer) { super(weight); this.queue = queue; this.iterator = iterator; this.simScorer = simScorer; } @Override public int docID() { return iterator.docID(); } float freq() throws IOException { DisiWrapper w = queue.topList(); float freq = ((WeightedDisiWrapper) w).freq(); for (w = w.next; w != null; w = w.next) { freq += ((WeightedDisiWrapper) w).freq(); if (freq < 0) { // overflow return Integer.MAX_VALUE; } } return freq; } @Override public float score() throws IOException { return simScorer.score(iterator.docID(), freq()); } @Override public DocIdSetIterator iterator() { return iterator; } @Override public float getMaxScore(int upTo) throws IOException { return Float.POSITIVE_INFINITY; } } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy