All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.lucene.spatial.geometry.shape.Ellipse Maven / Gradle / Ivy

/**
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.lucene.spatial.geometry.shape;


/**
 * Ellipse shape. From C++ gl.
 *
 * 

NOTE: This API is still in * flux and might change in incompatible ways in the next * release. */ public class Ellipse implements Geometry2D { private Point2D center; /** * Half length of major axis */ private double a; /** * Half length of minor axis */ private double b; private double k1, k2, k3; /** * sin of rotation angle */ private double s; /** * cos of rotation angle */ private double c; public Ellipse() { center = new Point2D(0, 0); } private double SQR(double d) { return d * d; } /** * Constructor given bounding rectangle and a rotation. */ public Ellipse(Point2D p1, Point2D p2, double angle) { center = new Point2D(); // Set the center center.x((p1.x() + p2.x()) * 0.5f); center.y((p1.y() + p2.y()) * 0.5f); // Find sin and cos of the angle double angleRad = Math.toRadians(angle); c = Math.cos(angleRad); s = Math.sin(angleRad); // Find the half lengths of the semi-major and semi-minor axes double dx = Math.abs(p2.x() - p1.x()) * 0.5; double dy = Math.abs(p2.y() - p1.y()) * 0.5; if (dx >= dy) { a = dx; b = dy; } else { a = dy; b = dx; } // Find k1, k2, k3 - define when a point x,y is on the ellipse k1 = SQR(c / a) + SQR(s / b); k2 = 2 * s * c * ((1 / SQR(a)) - (1 / SQR(b))); k3 = SQR(s / a) + SQR(c / b); } /** * Determines if a line segment intersects the ellipse and if so finds the * point(s) of intersection. * * @param seg * Line segment to test for intersection * @param pt0 * OUT - intersection point (if it exists) * @param pt1 * OUT - second intersection point (if it exists) * * @return Returns the number of intersection points (0, 1, or 2). */ public int intersect(LineSegment seg, Point2D pt0, Point2D pt1) { if (pt0 == null) pt0 = new Point2D(); if (pt1 == null) pt1 = new Point2D(); // Solution is found by parameterizing the line segment and // substituting those values into the ellipse equation. // Results in a quadratic equation. double x1 = center.x(); double y1 = center.y(); double u1 = seg.A.x(); double v1 = seg.A.y(); double u2 = seg.B.x(); double v2 = seg.B.y(); double dx = u2 - u1; double dy = v2 - v1; double q0 = k1 * SQR(u1 - x1) + k2 * (u1 - x1) * (v1 - y1) + k3 * SQR(v1 - y1) - 1; double q1 = (2 * k1 * dx * (u1 - x1)) + (k2 * dx * (v1 - y1)) + (k2 * dy * (u1 - x1)) + (2 * k3 * dy * (v1 - y1)); double q2 = (k1 * SQR(dx)) + (k2 * dx * dy) + (k3 * SQR(dy)); // Compare q1^2 to 4*q0*q2 to see how quadratic solves double d = SQR(q1) - (4 * q0 * q2); if (d < 0) { // Roots are complex valued. Line containing the segment does // not intersect the ellipse return 0; } if (d == 0) { // One real-valued root - line is tangent to the ellipse double t = -q1 / (2 * q2); if (0 <= t && t <= 1) { // Intersection occurs along line segment pt0.x(u1 + t * dx); pt0.y(v1 + t * dy); return 1; } else return 0; } else { // Two distinct real-valued roots. Solve for the roots and see if // they fall along the line segment int n = 0; double q = Math.sqrt(d); double t = (-q1 - q) / (2 * q2); if (0 <= t && t <= 1) { // Intersection occurs along line segment pt0.x(u1 + t * dx); pt0.y(v1 + t * dy); n++; } // 2nd root t = (-q1 + q) / (2 * q2); if (0 <= t && t <= 1) { if (n == 0) { pt0.x(u1 + t * dx); pt0.y(v1 + t * dy); n++; } else { pt1.x(u1 + t * dx); pt1.y(v1 + t * dy); n++; } } return n; } } public IntersectCase intersect(Rectangle r) { // Test if all 4 corners of the rectangle are inside the ellipse Point2D ul = new Point2D(r.MinPt().x(), r.MaxPt().y()); Point2D ur = new Point2D(r.MaxPt().x(), r.MaxPt().y()); Point2D ll = new Point2D(r.MinPt().x(), r.MinPt().y()); Point2D lr = new Point2D(r.MaxPt().x(), r.MinPt().y()); if (contains(ul) && contains(ur) && contains(ll) && contains(lr)) return IntersectCase.CONTAINS; // Test if any of the rectangle edges intersect Point2D pt0 = new Point2D(), pt1 = new Point2D(); LineSegment bottom = new LineSegment(ll, lr); if (intersect(bottom, pt0, pt1) > 0) return IntersectCase.INTERSECTS; LineSegment top = new LineSegment(ul, ur); if (intersect(top, pt0, pt1) > 0) return IntersectCase.INTERSECTS; LineSegment left = new LineSegment(ll, ul); if (intersect(left, pt0, pt1) > 0) return IntersectCase.INTERSECTS; LineSegment right = new LineSegment(lr, ur); if (intersect(right, pt0, pt1) > 0) return IntersectCase.INTERSECTS; // Ellipse does not intersect any edge : since the case for the ellipse // containing the rectangle was considered above then if the center // is inside the ellipse is fully inside and if center is outside // the ellipse is fully outside return (r.contains(center)) ? IntersectCase.WITHIN : IntersectCase.OUTSIDE; } public double area() { throw new UnsupportedOperationException(); } public Point2D centroid() { throw new UnsupportedOperationException(); } public boolean contains(Point2D pt) { // Plug in equation for ellipse, If evaluates to <= 0 then the // point is in or on the ellipse. double dx = pt.x() - center.x(); double dy = pt.y() - center.y(); double eq=(((k1 * SQR(dx)) + (k2 * dx * dy) + (k3 * SQR(dy)) - 1)); return eq<=0; } public void translate(Vector2D v) { throw new UnsupportedOperationException(); } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy