
org.apache.lucene.spatial3d.geom.PlanetModel Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of lucene-spatial3d Show documentation
Show all versions of lucene-spatial3d Show documentation
Lucene Spatial shapes implemented using 3D planar geometry
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.lucene.spatial3d.geom;
/**
* Holds mathematical constants associated with the model of a planet.
* @lucene.experimental
*/
public class PlanetModel {
/** Planet model corresponding to sphere. */
public static final PlanetModel SPHERE = new PlanetModel(1.0,1.0);
/** Mean radius */
// see http://earth-info.nga.mil/GandG/publications/tr8350.2/wgs84fin.pdf
public static final double WGS84_MEAN = 6371008.7714;
/** Polar radius */
public static final double WGS84_POLAR = 6356752.314245;
/** Equatorial radius */
public static final double WGS84_EQUATORIAL = 6378137.0;
/** Planet model corresponding to WGS84 */
public static final PlanetModel WGS84 = new PlanetModel(WGS84_EQUATORIAL/WGS84_MEAN,
WGS84_POLAR/WGS84_MEAN);
// Surface of the planet:
// x^2/a^2 + y^2/b^2 + z^2/c^2 = 1.0
// Scaling factors are a,b,c. geo3d can only support models where a==b, so use ab instead.
/** The x/y scaling factor */
public final double ab;
/** The z scaling factor */
public final double c;
/** The inverse of ab */
public final double inverseAb;
/** The inverse of c */
public final double inverseC;
/** The square of the inverse of ab */
public final double inverseAbSquared;
/** The square of the inverse of c */
public final double inverseCSquared;
/** The flattening value */
public final double flattening;
/** The square ratio */
public final double squareRatio;
// We do NOT include radius, because all computations in geo3d are in radians, not meters.
// Compute north and south pole for planet model, since these are commonly used.
/** North pole */
public final GeoPoint NORTH_POLE;
/** South pole */
public final GeoPoint SOUTH_POLE;
/** Min X pole */
public final GeoPoint MIN_X_POLE;
/** Max X pole */
public final GeoPoint MAX_X_POLE;
/** Min Y pole */
public final GeoPoint MIN_Y_POLE;
/** Max Y pole */
public final GeoPoint MAX_Y_POLE;
/** Constructor.
* @param ab is the x/y scaling factor.
* @param c is the z scaling factor.
*/
public PlanetModel(final double ab, final double c) {
this.ab = ab;
this.c = c;
this.inverseAb = 1.0 / ab;
this.inverseC = 1.0 / c;
this.flattening = (ab - c) * inverseAb;
this.squareRatio = (ab * ab - c * c) / (c * c);
this.inverseAbSquared = inverseAb * inverseAb;
this.inverseCSquared = inverseC * inverseC;
this.NORTH_POLE = new GeoPoint(c, 0.0, 0.0, 1.0, Math.PI * 0.5, 0.0);
this.SOUTH_POLE = new GeoPoint(c, 0.0, 0.0, -1.0, -Math.PI * 0.5, 0.0);
this.MIN_X_POLE = new GeoPoint(ab, -1.0, 0.0, 0.0, 0.0, -Math.PI);
this.MAX_X_POLE = new GeoPoint(ab, 1.0, 0.0, 0.0, 0.0, 0.0);
this.MIN_Y_POLE = new GeoPoint(ab, 0.0, -1.0, 0.0, 0.0, -Math.PI * 0.5);
this.MAX_Y_POLE = new GeoPoint(ab, 0.0, 1.0, 0.0, 0.0, Math.PI * 0.5);
}
/** Find the minimum magnitude of all points on the ellipsoid.
* @return the minimum magnitude for the planet.
*/
public double getMinimumMagnitude() {
return Math.min(this.ab, this.c);
}
/** Find the maximum magnitude of all points on the ellipsoid.
* @return the maximum magnitude for the planet.
*/
public double getMaximumMagnitude() {
return Math.max(this.ab, this.c);
}
/** Find the minimum x value.
*@return the minimum X value.
*/
public double getMinimumXValue() {
return -this.ab;
}
/** Find the maximum x value.
*@return the maximum X value.
*/
public double getMaximumXValue() {
return this.ab;
}
/** Find the minimum y value.
*@return the minimum Y value.
*/
public double getMinimumYValue() {
return -this.ab;
}
/** Find the maximum y value.
*@return the maximum Y value.
*/
public double getMaximumYValue() {
return this.ab;
}
/** Find the minimum z value.
*@return the minimum Z value.
*/
public double getMinimumZValue() {
return -this.c;
}
/** Find the maximum z value.
*@return the maximum Z value.
*/
public double getMaximumZValue() {
return this.c;
}
/** Check if point is on surface.
* @param v is the point to check.
* @return true if the point is on the planet surface.
*/
public boolean pointOnSurface(final Vector v) {
return pointOnSurface(v.x, v.y, v.z);
}
/** Check if point is on surface.
* @param x is the x coord.
* @param y is the y coord.
* @param z is the z coord.
*/
public boolean pointOnSurface(final double x, final double y, final double z) {
// Equation of planet surface is:
// x^2 / a^2 + y^2 / b^2 + z^2 / c^2 - 1 = 0
return Math.abs(x * x * inverseAb * inverseAb + y * y * inverseAb * inverseAb + z * z * inverseC * inverseC - 1.0) < Vector.MINIMUM_RESOLUTION;
}
/** Check if point is outside surface.
* @param v is the point to check.
* @return true if the point is outside the planet surface.
*/
public boolean pointOutside(final Vector v) {
return pointOutside(v.x, v.y, v.z);
}
/** Check if point is outside surface.
* @param x is the x coord.
* @param y is the y coord.
* @param z is the z coord.
*/
public boolean pointOutside(final double x, final double y, final double z) {
// Equation of planet surface is:
// x^2 / a^2 + y^2 / b^2 + z^2 / c^2 - 1 = 0
return (x * x + y * y) * inverseAb * inverseAb + z * z * inverseC * inverseC - 1.0 > Vector.MINIMUM_RESOLUTION;
}
/** Compute surface distance between two points.
* @param pt1 is the first point.
* @param pt2 is the second point.
* @return the adjusted angle, when multiplied by the mean earth radius, yields a surface distance. This will differ
* from GeoPoint.arcDistance() only when the planet model is not a sphere. @see {@link GeoPoint#arcDistance(GeoPoint)}
*/
public double surfaceDistance(final GeoPoint pt1, final GeoPoint pt2) {
final double L = pt2.getLongitude() - pt1.getLongitude();
final double U1 = Math.atan((1.0-flattening) * Math.tan(pt1.getLatitude()));
final double U2 = Math.atan((1.0-flattening) * Math.tan(pt2.getLatitude()));
final double sinU1 = Math.sin(U1);
final double cosU1 = Math.cos(U1);
final double sinU2 = Math.sin(U2);
final double cosU2 = Math.cos(U2);
final double dCosU1CosU2 = cosU1 * cosU2;
final double dCosU1SinU2 = cosU1 * sinU2;
final double dSinU1SinU2 = sinU1 * sinU2;
final double dSinU1CosU2 = sinU1 * cosU2;
double lambda = L;
double lambdaP = Math.PI * 2.0;
int iterLimit = 0;
double cosSqAlpha;
double sinSigma;
double cos2SigmaM;
double cosSigma;
double sigma;
double sinAlpha;
double C;
double sinLambda, cosLambda;
do {
sinLambda = Math.sin(lambda);
cosLambda = Math.cos(lambda);
sinSigma = Math.sqrt((cosU2*sinLambda) * (cosU2*sinLambda) +
(dCosU1SinU2 - dSinU1CosU2 * cosLambda) * (dCosU1SinU2 - dSinU1CosU2 * cosLambda));
if (sinSigma==0.0) {
return 0.0;
}
cosSigma = dSinU1SinU2 + dCosU1CosU2 * cosLambda;
sigma = Math.atan2(sinSigma, cosSigma);
sinAlpha = dCosU1CosU2 * sinLambda / sinSigma;
cosSqAlpha = 1.0 - sinAlpha * sinAlpha;
cos2SigmaM = cosSigma - 2.0 * dSinU1SinU2 / cosSqAlpha;
if (Double.isNaN(cos2SigmaM))
cos2SigmaM = 0.0; // equatorial line: cosSqAlpha=0
C = flattening / 16.0 * cosSqAlpha * (4.0 + flattening * (4.0 - 3.0 * cosSqAlpha));
lambdaP = lambda;
lambda = L + (1.0 - C) * flattening * sinAlpha *
(sigma + C * sinSigma * (cos2SigmaM + C * cosSigma * (-1.0 + 2.0 * cos2SigmaM *cos2SigmaM)));
} while (Math.abs(lambda-lambdaP) > Vector.MINIMUM_RESOLUTION && ++iterLimit < 40);
final double uSq = cosSqAlpha * this.squareRatio;
final double A = 1.0 + uSq / 16384.0 * (4096.0 + uSq * (-768.0 + uSq * (320.0 - 175.0 * uSq)));
final double B = uSq / 1024.0 * (256.0 + uSq * (-128.0 + uSq * (74.0 - 47.0 * uSq)));
final double deltaSigma = B * sinSigma * (cos2SigmaM + B / 4.0 * (cosSigma * (-1.0 + 2.0 * cos2SigmaM * cos2SigmaM)-
B / 6.0 * cos2SigmaM * (-3.0 + 4.0 * sinSigma * sinSigma) * (-3.0 + 4.0 * cos2SigmaM * cos2SigmaM)));
return c * A * (sigma - deltaSigma);
}
@Override
public boolean equals(final Object o) {
if (!(o instanceof PlanetModel))
return false;
final PlanetModel other = (PlanetModel)o;
return ab == other.ab && c == other.c;
}
@Override
public int hashCode() {
return Double.hashCode(ab) + Double.hashCode(c);
}
@Override
public String toString() {
if (this.equals(SPHERE)) {
return "PlanetModel.SPHERE";
} else if (this.equals(WGS84)) {
return "PlanetModel.WGS84";
} else {
return "PlanetModel(ab="+ab+" c="+c+")";
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy