org.apache.lucene.spatial3d.geom.GeoDegeneratePath Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of lucene-spatial3d Show documentation
Show all versions of lucene-spatial3d Show documentation
Lucene Spatial shapes implemented using 3D planar geometry
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.lucene.spatial3d.geom;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.IOException;
import java.util.ArrayList;
import java.util.Collections;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
/**
* GeoShape representing a path across the surface of the globe,
* with a specified half-width. Path is described by a series of points.
* Distances are measured from the starting point along the path, and then at right
* angles to the path.
*
* @lucene.internal
*/
class GeoDegeneratePath extends GeoBasePath {
/** The original list of path points */
protected final List points = new ArrayList();
/** A list of SegmentEndpoints */
protected List endPoints;
/** A list of PathSegments */
protected List segments;
/** A point on the edge */
protected GeoPoint[] edgePoints;
/** Set to true if path has been completely constructed */
protected boolean isDone = false;
/** Constructor.
*@param planetModel is the planet model.
*@param pathPoints are the points in the path.
*/
public GeoDegeneratePath(final PlanetModel planetModel, final GeoPoint[] pathPoints) {
this(planetModel);
Collections.addAll(points, pathPoints);
done();
}
/** Piece-wise constructor. Use in conjunction with addPoint() and done().
*@param planetModel is the planet model.
*/
public GeoDegeneratePath(final PlanetModel planetModel) {
super(planetModel);
}
/** Add a point to the path.
*@param lat is the latitude of the point.
*@param lon is the longitude of the point.
*/
public void addPoint(final double lat, final double lon) {
if (isDone)
throw new IllegalStateException("Can't call addPoint() if done() already called");
points.add(new GeoPoint(planetModel, lat, lon));
}
/** Complete the path.
*/
public void done() {
if (isDone)
throw new IllegalStateException("Can't call done() twice");
if (points.size() == 0)
throw new IllegalArgumentException("Path must have at least one point");
isDone = true;
endPoints = new ArrayList<>(points.size());
segments = new ArrayList<>(points.size());
// First, build all segments. We'll then go back and build corresponding segment endpoints.
GeoPoint lastPoint = null;
for (final GeoPoint end : points) {
if (lastPoint != null) {
final Plane normalizedConnectingPlane = new Plane(lastPoint, end);
if (normalizedConnectingPlane == null) {
continue;
}
segments.add(new PathSegment(planetModel, lastPoint, end, normalizedConnectingPlane));
}
lastPoint = end;
}
if (segments.size() == 0) {
// Simple circle
final GeoPoint point = points.get(0);
final SegmentEndpoint onlyEndpoint = new SegmentEndpoint(point);
endPoints.add(onlyEndpoint);
this.edgePoints = new GeoPoint[]{point};
return;
}
// Create segment endpoints. Use an appropriate constructor for the start and end of the path.
for (int i = 0; i < segments.size(); i++) {
final PathSegment currentSegment = segments.get(i);
if (i == 0) {
// Starting endpoint
final SegmentEndpoint startEndpoint = new SegmentEndpoint(currentSegment.start,
currentSegment.startCutoffPlane);
endPoints.add(startEndpoint);
this.edgePoints = new GeoPoint[]{currentSegment.start};
continue;
}
endPoints.add(new SegmentEndpoint(currentSegment.start,
segments.get(i-1).endCutoffPlane,
currentSegment.startCutoffPlane));
}
// Do final endpoint
final PathSegment lastSegment = segments.get(segments.size()-1);
endPoints.add(new SegmentEndpoint(lastSegment.end,
lastSegment.endCutoffPlane));
}
/**
* Constructor for deserialization.
* @param planetModel is the planet model.
* @param inputStream is the input stream.
*/
public GeoDegeneratePath(final PlanetModel planetModel, final InputStream inputStream) throws IOException {
this(planetModel,
SerializableObject.readPointArray(planetModel, inputStream));
}
@Override
public void write(final OutputStream outputStream) throws IOException {
SerializableObject.writePointArray(outputStream, points);
}
@Override
public double computePathCenterDistance(final DistanceStyle distanceStyle, final double x, final double y, final double z) {
// Walk along path and keep track of the closest distance we find
double closestDistance = Double.POSITIVE_INFINITY;
// Segments first
for (PathSegment segment : segments) {
final double segmentDistance = segment.pathCenterDistance(planetModel, distanceStyle, x, y, z);
if (segmentDistance < closestDistance) {
closestDistance = segmentDistance;
}
}
// Now, endpoints
for (SegmentEndpoint endpoint : endPoints) {
final double endpointDistance = endpoint.pathCenterDistance(distanceStyle, x, y, z);
if (endpointDistance < closestDistance) {
closestDistance = endpointDistance;
}
}
return closestDistance;
}
@Override
public double computeNearestDistance(final DistanceStyle distanceStyle, final double x, final double y, final double z) {
double currentDistance = 0.0;
double minPathCenterDistance = Double.POSITIVE_INFINITY;
double bestDistance = Double.POSITIVE_INFINITY;
int segmentIndex = 0;
for (SegmentEndpoint endpoint : endPoints) {
final double endpointPathCenterDistance = endpoint.pathCenterDistance(distanceStyle, x, y, z);
if (endpointPathCenterDistance < minPathCenterDistance) {
// Use this endpoint
minPathCenterDistance = endpointPathCenterDistance;
bestDistance = currentDistance;
}
// Look at the following segment, if any
if (segmentIndex < segments.size()) {
final PathSegment segment = segments.get(segmentIndex++);
final double segmentPathCenterDistance = segment.pathCenterDistance(planetModel, distanceStyle, x, y, z);
if (segmentPathCenterDistance < minPathCenterDistance) {
minPathCenterDistance = segmentPathCenterDistance;
bestDistance = distanceStyle.aggregateDistances(currentDistance, segment.nearestPathDistance(planetModel, distanceStyle, x, y, z));
}
currentDistance = distanceStyle.aggregateDistances(currentDistance, segment.fullPathDistance(distanceStyle));
}
}
return bestDistance;
}
@Override
protected double distance(final DistanceStyle distanceStyle, final double x, final double y, final double z) {
// Algorithm:
// (1) If the point is within any of the segments along the path, return that value.
// (2) If the point is within any of the segment end circles along the path, return that value.
double currentDistance = 0.0;
for (PathSegment segment : segments) {
double distance = segment.pathDistance(planetModel, distanceStyle, x,y,z);
if (distance != Double.POSITIVE_INFINITY)
return distanceStyle.fromAggregationForm(distanceStyle.aggregateDistances(currentDistance, distance));
currentDistance = distanceStyle.aggregateDistances(currentDistance, segment.fullPathDistance(distanceStyle));
}
int segmentIndex = 0;
currentDistance = 0.0;
for (SegmentEndpoint endpoint : endPoints) {
double distance = endpoint.pathDistance(distanceStyle, x, y, z);
if (distance != Double.POSITIVE_INFINITY)
return distanceStyle.fromAggregationForm(distanceStyle.aggregateDistances(currentDistance, distance));
if (segmentIndex < segments.size())
currentDistance = distanceStyle.aggregateDistances(currentDistance, segments.get(segmentIndex++).fullPathDistance(distanceStyle));
}
return Double.POSITIVE_INFINITY;
}
@Override
protected double deltaDistance(final DistanceStyle distanceStyle, final double x, final double y, final double z) {
// Since this is always called when a point is within the degenerate path, delta distance is always zero by definition.
return 0.0;
}
@Override
protected void distanceBounds(final Bounds bounds, final DistanceStyle distanceStyle, final double distanceValue) {
// TBD: Compute actual bounds based on distance
getBounds(bounds);
}
@Override
protected double outsideDistance(final DistanceStyle distanceStyle, final double x, final double y, final double z) {
double minDistance = Double.POSITIVE_INFINITY;
for (final SegmentEndpoint endpoint : endPoints) {
final double newDistance = endpoint.outsideDistance(distanceStyle, x,y,z);
if (newDistance < minDistance)
minDistance = newDistance;
}
for (final PathSegment segment : segments) {
final double newDistance = segment.outsideDistance(planetModel, distanceStyle, x, y, z);
if (newDistance < minDistance)
minDistance = newDistance;
}
return minDistance;
}
@Override
public boolean isWithin(final double x, final double y, final double z) {
for (SegmentEndpoint pathPoint : endPoints) {
if (pathPoint.isWithin(x, y, z)) {
return true;
}
}
for (PathSegment pathSegment : segments) {
if (pathSegment.isWithin(x, y, z)) {
return true;
}
}
return false;
}
@Override
public GeoPoint[] getEdgePoints() {
return edgePoints;
}
@Override
public boolean intersects(final Plane plane, final GeoPoint[] notablePoints, final Membership... bounds) {
// We look for an intersection with any of the exterior edges of the path.
// We also have to look for intersections with the cones described by the endpoints.
// Return "true" if any such intersections are found.
// For plane intersections, the basic idea is to come up with an equation of the line that is
// the intersection (if any). Then, find the intersections with the unit sphere (if any). If
// any of the intersection points are within the bounds, then we've detected an intersection.
// Well, sort of. We can detect intersections also due to overlap of segments with each other.
// But that's an edge case and we won't be optimizing for it.
//System.err.println(" Looking for intersection of plane "+plane+" with path "+this);
// Since the endpoints are included in the path segments, we only need to do this if there are
// no path segments
if (endPoints.size() == 1) {
return endPoints.get(0).intersects(planetModel, plane, notablePoints, bounds);
}
for (final PathSegment pathSegment : segments) {
if (pathSegment.intersects(planetModel, plane, notablePoints, bounds)) {
return true;
}
}
return false;
}
@Override
public boolean intersects(GeoShape geoShape) {
// Since the endpoints are included in the path segments, we only need to do this if there are
// no path segments
if (endPoints.size() == 1) {
return endPoints.get(0).intersects(geoShape);
}
for (final PathSegment pathSegment : segments) {
if (pathSegment.intersects(geoShape)) {
return true;
}
}
return false;
}
@Override
public void getBounds(Bounds bounds) {
super.getBounds(bounds);
// For building bounds, order matters. We want to traverse
// never more than 180 degrees longitude at a pop or we risk having the
// bounds object get itself inverted. So do the edges first.
for (PathSegment pathSegment : segments) {
pathSegment.getBounds(planetModel, bounds);
}
if (endPoints.size() == 1) {
endPoints.get(0).getBounds(planetModel, bounds);
}
}
@Override
public boolean equals(Object o) {
if (!(o instanceof GeoDegeneratePath))
return false;
GeoDegeneratePath p = (GeoDegeneratePath) o;
if (!super.equals(p))
return false;
return points.equals(p.points);
}
@Override
public int hashCode() {
int result = super.hashCode();
result = 31 * result + points.hashCode();
return result;
}
@Override
public String toString() {
return "GeoDegeneratePath: {planetmodel=" + planetModel+", points={" + points + "}}";
}
/**
* This is precalculated data for segment endpoint. Since the path is degenerate, there are several different cases:
* (1) The path consists of a single endpoint. In this case, the degenerate path consists of this one point.
* (2) This is the end of a path. There is a bounding plane passed in which describes the part of the world that is considered
* to belong to this endpoint.
* (3) Intersection. There are two cutoff planes, one for each end of the intersection.
*/
private static class SegmentEndpoint {
/** The center point of the endpoint */
public final GeoPoint point;
/** Pertinent cutoff planes from adjoining segments */
public final Membership[] cutoffPlanes;
/** Notable points for this segment endpoint */
public final GeoPoint[] notablePoints;
/** No notable points from the circle itself */
public final static GeoPoint[] circlePoints = new GeoPoint[0];
/** Null membership */
public final static Membership[] NO_MEMBERSHIP = new Membership[0];
/** Constructor for case (1).
*@param point is the center point.
*/
public SegmentEndpoint(final GeoPoint point) {
this.point = point;
this.cutoffPlanes = NO_MEMBERSHIP;
this.notablePoints = circlePoints;
}
/** Constructor for case (2).
* Generate an endpoint, given a single cutoff plane plus upper and lower edge points.
*@param point is the center point.
*@param cutoffPlane is the plane from the adjoining path segment marking the boundary between this endpoint and that segment.
*/
public SegmentEndpoint(final GeoPoint point, final SidedPlane cutoffPlane) {
this.point = point;
this.cutoffPlanes = new Membership[]{new SidedPlane(cutoffPlane)};
this.notablePoints = new GeoPoint[]{point};
}
/** Constructor for case (3).
* Generate an endpoint, given two cutoff planes.
*@param point is the center.
*@param cutoffPlane1 is one adjoining path segment cutoff plane.
*@param cutoffPlane2 is another adjoining path segment cutoff plane.
*/
public SegmentEndpoint(final GeoPoint point,
final SidedPlane cutoffPlane1, final SidedPlane cutoffPlane2) {
this.point = point;
this.cutoffPlanes = new Membership[]{new SidedPlane(cutoffPlane1), new SidedPlane(cutoffPlane2)};
this.notablePoints = new GeoPoint[]{point};
}
/** Check if point is within this endpoint.
*@param point is the point.
*@return true of within.
*/
public boolean isWithin(final Vector point) {
return this.point.isIdentical(point.x, point.y, point.z);
}
/** Check if point is within this endpoint.
*@param x is the point x.
*@param y is the point y.
*@param z is the point z.
*@return true of within.
*/
public boolean isWithin(final double x, final double y, final double z) {
return this.point.isIdentical(x, y, z);
}
/** Compute interior path distance.
*@param distanceStyle is the distance style.
*@param x is the point x.
*@param y is the point y.
*@param z is the point z.
*@return the distance metric, in aggregation form.
*/
public double pathDistance(final DistanceStyle distanceStyle, final double x, final double y, final double z) {
if (!isWithin(x,y,z))
return Double.POSITIVE_INFINITY;
return distanceStyle.toAggregationForm(distanceStyle.computeDistance(this.point, x, y, z));
}
/** Compute nearest path distance.
*@param distanceStyle is the distance style.
*@param x is the point x.
*@param y is the point y.
*@param z is the point z.
*@return the distance metric (always value zero), in aggregation form, or POSITIVE_INFINITY
* if the point is not within the bounds of the endpoint.
*/
public double nearestPathDistance(final DistanceStyle distanceStyle, final double x, final double y, final double z) {
for (final Membership m : cutoffPlanes) {
if (!m.isWithin(x,y,z)) {
return Double.POSITIVE_INFINITY;
}
}
return distanceStyle.toAggregationForm(0.0);
}
/** Compute path center distance.
*@param distanceStyle is the distance style.
*@param x is the point x.
*@param y is the point y.
*@param z is the point z.
*@return the distance metric, or POSITIVE_INFINITY
* if the point is not within the bounds of the endpoint.
*/
public double pathCenterDistance(final DistanceStyle distanceStyle, final double x, final double y, final double z) {
for (final Membership m : cutoffPlanes) {
if (!m.isWithin(x,y,z)) {
return Double.POSITIVE_INFINITY;
}
}
return distanceStyle.computeDistance(this.point, x, y, z);
}
/** Compute external distance.
*@param distanceStyle is the distance style.
*@param x is the point x.
*@param y is the point y.
*@param z is the point z.
*@return the distance metric.
*/
public double outsideDistance(final DistanceStyle distanceStyle, final double x, final double y, final double z) {
return distanceStyle.computeDistance(this.point, x, y, z);
}
/** Determine if this endpoint intersects a specified plane.
*@param planetModel is the planet model.
*@param p is the plane.
*@param notablePoints are the points associated with the plane.
*@param bounds are any bounds which the intersection must lie within.
*@return true if there is a matching intersection.
*/
public boolean intersects(final PlanetModel planetModel, final Plane p, final GeoPoint[] notablePoints, final Membership[] bounds) {
// If not on the plane, no intersection
if (!p.evaluateIsZero(point))
return false;
for (Membership m : bounds) {
if (!m.isWithin(point))
return false;
}
return true;
}
/** Determine if this endpoint intersects a GeoShape.
*@param geoShape is the GeoShape.
*@return true if there is shape intersect this endpoint.
*/
public boolean intersects(final GeoShape geoShape) {
return geoShape.isWithin(point);
}
/** Get the bounds for a segment endpoint.
*@param planetModel is the planet model.
*@param bounds are the bounds to be modified.
*/
public void getBounds(final PlanetModel planetModel, Bounds bounds) {
bounds.addPoint(point);
}
@Override
public boolean equals(Object o) {
if (!(o instanceof SegmentEndpoint))
return false;
SegmentEndpoint other = (SegmentEndpoint) o;
return point.equals(other.point);
}
@Override
public int hashCode() {
return point.hashCode();
}
@Override
public String toString() {
return point.toString();
}
}
/**
* This is the pre-calculated data for a path segment.
*/
private static class PathSegment {
/** Starting point of the segment */
public final GeoPoint start;
/** End point of the segment */
public final GeoPoint end;
/** Place to keep any complete segment distances we've calculated so far */
public final Map fullDistanceCache = new HashMap();
/** Normalized plane connecting the two points and going through world center */
public final Plane normalizedConnectingPlane;
/** Plane going through the center and start point, marking the start edge of the segment */
public final SidedPlane startCutoffPlane;
/** Plane going through the center and end point, marking the end edge of the segment */
public final SidedPlane endCutoffPlane;
/** Notable points for the connecting plane */
public final GeoPoint[] connectingPlanePoints;
/** Construct a path segment.
*@param planetModel is the planet model.
*@param start is the starting point.
*@param end is the ending point.
*@param normalizedConnectingPlane is the connecting plane.
*/
public PathSegment(final PlanetModel planetModel, final GeoPoint start, final GeoPoint end,
final Plane normalizedConnectingPlane) {
this.start = start;
this.end = end;
this.normalizedConnectingPlane = normalizedConnectingPlane;
// Cutoff planes use opposite endpoints as correct side examples
startCutoffPlane = new SidedPlane(end, normalizedConnectingPlane, start);
endCutoffPlane = new SidedPlane(start, normalizedConnectingPlane, end);
connectingPlanePoints = new GeoPoint[]{start, end};
}
/** Compute the full distance along this path segment.
*@param distanceStyle is the distance style.
*@return the distance metric, in aggregation form.
*/
public double fullPathDistance(final DistanceStyle distanceStyle) {
synchronized (fullDistanceCache) {
Double dist = fullDistanceCache.get(distanceStyle);
if (dist == null) {
dist = distanceStyle.toAggregationForm(distanceStyle.computeDistance(start, end.x, end.y, end.z));
fullDistanceCache.put(distanceStyle, dist);
}
return dist.doubleValue();
}
}
/** Check if point is within this segment.
*@param point is the point.
*@return true of within.
*/
public boolean isWithin(final Vector point) {
return startCutoffPlane.isWithin(point) &&
endCutoffPlane.isWithin(point) &&
normalizedConnectingPlane.evaluateIsZero(point);
}
/** Check if point is within this segment.
*@param x is the point x.
*@param y is the point y.
*@param z is the point z.
*@return true of within.
*/
public boolean isWithin(final double x, final double y, final double z) {
return startCutoffPlane.isWithin(x, y, z) &&
endCutoffPlane.isWithin(x, y, z) &&
normalizedConnectingPlane.evaluateIsZero(x, y, z);
}
/** Compute path center distance.
*@param planetModel is the planet model.
*@param distanceStyle is the distance style.
*@param x is the point x.
*@param y is the point y.
*@param z is the point z.
*@return the distance metric, or Double.POSITIVE_INFINITY if outside this segment
*/
public double pathCenterDistance(final PlanetModel planetModel, final DistanceStyle distanceStyle, final double x, final double y, final double z) {
// First, if this point is outside the endplanes of the segment, return POSITIVE_INFINITY.
if (!startCutoffPlane.isWithin(x, y, z) || !endCutoffPlane.isWithin(x, y, z)) {
return Double.POSITIVE_INFINITY;
}
// (1) Compute normalizedPerpPlane. If degenerate, then there is no such plane, which means that the point given
// is insufficient to distinguish between a family of such planes. This can happen only if the point is one of the
// "poles", imagining the normalized plane to be the "equator". In that case, the distance returned should be zero.
// Want no allocations or expensive operations! so we do this the hard way
final double perpX = normalizedConnectingPlane.y * z - normalizedConnectingPlane.z * y;
final double perpY = normalizedConnectingPlane.z * x - normalizedConnectingPlane.x * z;
final double perpZ = normalizedConnectingPlane.x * y - normalizedConnectingPlane.y * x;
final double magnitude = Math.sqrt(perpX * perpX + perpY * perpY + perpZ * perpZ);
if (Math.abs(magnitude) < Vector.MINIMUM_RESOLUTION)
return distanceStyle.computeDistance(start, x, y, z);
final double normFactor = 1.0/magnitude;
final Plane normalizedPerpPlane = new Plane(perpX * normFactor, perpY * normFactor, perpZ * normFactor, 0.0);
final GeoPoint[] intersectionPoints = normalizedConnectingPlane.findIntersections(planetModel, normalizedPerpPlane);
GeoPoint thePoint;
if (intersectionPoints.length == 0)
throw new RuntimeException("Can't find world intersection for point x="+x+" y="+y+" z="+z);
else if (intersectionPoints.length == 1)
thePoint = intersectionPoints[0];
else {
if (startCutoffPlane.isWithin(intersectionPoints[0]) && endCutoffPlane.isWithin(intersectionPoints[0]))
thePoint = intersectionPoints[0];
else if (startCutoffPlane.isWithin(intersectionPoints[1]) && endCutoffPlane.isWithin(intersectionPoints[1]))
thePoint = intersectionPoints[1];
else
throw new RuntimeException("Can't find world intersection for point x="+x+" y="+y+" z="+z);
}
return distanceStyle.computeDistance(thePoint, x, y, z);
}
/** Compute nearest path distance.
*@param planetModel is the planet model.
*@param distanceStyle is the distance style.
*@param x is the point x.
*@param y is the point y.
*@param z is the point z.
*@return the distance metric, in aggregation form, or Double.POSITIVE_INFINITY if outside this segment
*/
public double nearestPathDistance(final PlanetModel planetModel, final DistanceStyle distanceStyle, final double x, final double y, final double z) {
// First, if this point is outside the endplanes of the segment, return POSITIVE_INFINITY.
if (!startCutoffPlane.isWithin(x, y, z) || !endCutoffPlane.isWithin(x, y, z)) {
return Double.POSITIVE_INFINITY;
}
// (1) Compute normalizedPerpPlane. If degenerate, then there is no such plane, which means that the point given
// is insufficient to distinguish between a family of such planes. This can happen only if the point is one of the
// "poles", imagining the normalized plane to be the "equator". In that case, the distance returned should be zero.
// Want no allocations or expensive operations! so we do this the hard way
final double perpX = normalizedConnectingPlane.y * z - normalizedConnectingPlane.z * y;
final double perpY = normalizedConnectingPlane.z * x - normalizedConnectingPlane.x * z;
final double perpZ = normalizedConnectingPlane.x * y - normalizedConnectingPlane.y * x;
final double magnitude = Math.sqrt(perpX * perpX + perpY * perpY + perpZ * perpZ);
if (Math.abs(magnitude) < Vector.MINIMUM_RESOLUTION)
return distanceStyle.toAggregationForm(0.0);
final double normFactor = 1.0/magnitude;
final Plane normalizedPerpPlane = new Plane(perpX * normFactor, perpY * normFactor, perpZ * normFactor, 0.0);
final GeoPoint[] intersectionPoints = normalizedConnectingPlane.findIntersections(planetModel, normalizedPerpPlane);
GeoPoint thePoint;
if (intersectionPoints.length == 0)
throw new RuntimeException("Can't find world intersection for point x="+x+" y="+y+" z="+z);
else if (intersectionPoints.length == 1)
thePoint = intersectionPoints[0];
else {
if (startCutoffPlane.isWithin(intersectionPoints[0]) && endCutoffPlane.isWithin(intersectionPoints[0]))
thePoint = intersectionPoints[0];
else if (startCutoffPlane.isWithin(intersectionPoints[1]) && endCutoffPlane.isWithin(intersectionPoints[1]))
thePoint = intersectionPoints[1];
else
throw new RuntimeException("Can't find world intersection for point x="+x+" y="+y+" z="+z);
}
return distanceStyle.toAggregationForm(distanceStyle.computeDistance(start, thePoint.x, thePoint.y, thePoint.z));
}
/** Compute interior path distance.
*@param planetModel is the planet model.
*@param distanceStyle is the distance style.
*@param x is the point x.
*@param y is the point y.
*@param z is the point z.
*@return the distance metric, in aggregation form.
*/
public double pathDistance(final PlanetModel planetModel, final DistanceStyle distanceStyle, final double x, final double y, final double z) {
if (!isWithin(x,y,z))
return Double.POSITIVE_INFINITY;
// (1) Compute normalizedPerpPlane. If degenerate, then return point distance from start to point.
// Want no allocations or expensive operations! so we do this the hard way
final double perpX = normalizedConnectingPlane.y * z - normalizedConnectingPlane.z * y;
final double perpY = normalizedConnectingPlane.z * x - normalizedConnectingPlane.x * z;
final double perpZ = normalizedConnectingPlane.x * y - normalizedConnectingPlane.y * x;
final double magnitude = Math.sqrt(perpX * perpX + perpY * perpY + perpZ * perpZ);
if (Math.abs(magnitude) < Vector.MINIMUM_RESOLUTION)
return distanceStyle.toAggregationForm(distanceStyle.computeDistance(start, x,y,z));
final double normFactor = 1.0/magnitude;
final Plane normalizedPerpPlane = new Plane(perpX * normFactor, perpY * normFactor, perpZ * normFactor, 0.0);
// Old computation: too expensive, because it calculates the intersection point twice.
//return distanceStyle.computeDistance(planetModel, normalizedConnectingPlane, x, y, z, startCutoffPlane, endCutoffPlane) +
// distanceStyle.computeDistance(planetModel, normalizedPerpPlane, start.x, start.y, start.z, upperConnectingPlane, lowerConnectingPlane);
final GeoPoint[] intersectionPoints = normalizedConnectingPlane.findIntersections(planetModel, normalizedPerpPlane);
GeoPoint thePoint;
if (intersectionPoints.length == 0)
throw new RuntimeException("Can't find world intersection for point x="+x+" y="+y+" z="+z);
else if (intersectionPoints.length == 1)
thePoint = intersectionPoints[0];
else {
if (startCutoffPlane.isWithin(intersectionPoints[0]) && endCutoffPlane.isWithin(intersectionPoints[0]))
thePoint = intersectionPoints[0];
else if (startCutoffPlane.isWithin(intersectionPoints[1]) && endCutoffPlane.isWithin(intersectionPoints[1]))
thePoint = intersectionPoints[1];
else
throw new RuntimeException("Can't find world intersection for point x="+x+" y="+y+" z="+z);
}
return distanceStyle.aggregateDistances(distanceStyle.toAggregationForm(distanceStyle.computeDistance(thePoint, x, y, z)),
distanceStyle.toAggregationForm(distanceStyle.computeDistance(start, thePoint.x, thePoint.y, thePoint.z)));
}
/** Compute external distance.
*@param planetModel is the planet model.
*@param distanceStyle is the distance style.
*@param x is the point x.
*@param y is the point y.
*@param z is the point z.
*@return the distance metric.
*/
public double outsideDistance(final PlanetModel planetModel, final DistanceStyle distanceStyle, final double x, final double y, final double z) {
final double distance = distanceStyle.computeDistance(planetModel, normalizedConnectingPlane, x,y,z, startCutoffPlane, endCutoffPlane);
final double startDistance = distanceStyle.computeDistance(start, x,y,z);
final double endDistance = distanceStyle.computeDistance(end, x,y,z);
return Math.min(
Math.min(startDistance, endDistance),
distance);
}
/** Determine if this endpoint intersects a specified plane.
*@param planetModel is the planet model.
*@param p is the plane.
*@param notablePoints are the points associated with the plane.
*@param bounds are any bounds which the intersection must lie within.
*@return true if there is a matching intersection.
*/
public boolean intersects(final PlanetModel planetModel, final Plane p, final GeoPoint[] notablePoints, final Membership[] bounds) {
return normalizedConnectingPlane.intersects(planetModel, p, connectingPlanePoints, notablePoints, bounds, startCutoffPlane, endCutoffPlane);
}
/** Determine if this endpoint intersects a specified GeoShape.
*@param geoShape is the GeoShape.
*@return true if there GeoShape intersects this endpoint.
*/
public boolean intersects(final GeoShape geoShape) {
return geoShape.intersects(normalizedConnectingPlane, connectingPlanePoints, startCutoffPlane, endCutoffPlane);
}
/** Get the bounds for a segment endpoint.
*@param planetModel is the planet model.
*@param bounds are the bounds to be modified.
*/
public void getBounds(final PlanetModel planetModel, Bounds bounds) {
// We need to do all bounding planes as well as corner points
bounds.addPoint(start).addPoint(end)
.addPlane(planetModel, normalizedConnectingPlane, startCutoffPlane, endCutoffPlane);
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy