org.apache.lucene.spatial3d.geom.Plane Maven / Gradle / Ivy
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.lucene.spatial3d.geom;
/**
* We know about three kinds of planes. First kind: general plain through two points and origin
* Second kind: horizontal plane at specified height. Third kind: vertical plane with specified x and y value, through origin.
*
* @lucene.experimental
*/
public class Plane extends Vector {
/** An array with no points in it */
public final static GeoPoint[] NO_POINTS = new GeoPoint[0];
/** An array with no bounds in it */
public final static Membership[] NO_BOUNDS = new Membership[0];
/** A vertical plane normal to the Y axis */
public final static Plane normalYPlane = new Plane(0.0,1.0,0.0,0.0);
/** A vertical plane normal to the X axis */
public final static Plane normalXPlane = new Plane(1.0,0.0,0.0,0.0);
/** A vertical plane normal to the Z axis */
public final static Plane normalZPlane = new Plane(0.0,0.0,1.0,0.0);
/** Ax + By + Cz + D = 0 */
public final double D;
/**
* Construct a plane with all four coefficients defined.
*@param A is A
*@param B is B
*@param C is C
*@param D is D
*/
public Plane(final double A, final double B, final double C, final double D) {
super(A, B, C);
this.D = D;
}
/**
* Construct a plane through two points and origin.
*
* @param A is the first point (origin based).
* @param BX is the second point X (origin based).
* @param BY is the second point Y (origin based).
* @param BZ is the second point Z (origin based).
*/
public Plane(final Vector A, final double BX, final double BY, final double BZ) {
super(A, BX, BY, BZ);
D = 0.0;
}
/**
* Construct a plane through two points and origin.
*
* @param A is the first point (origin based).
* @param B is the second point (origin based).
*/
public Plane(final Vector A, final Vector B) {
super(A, B);
D = 0.0;
}
/**
* Construct a horizontal plane at a specified Z.
*
* @param planetModel is the planet model.
* @param sinLat is the sin(latitude).
*/
public Plane(final PlanetModel planetModel, final double sinLat) {
super(0.0, 0.0, 1.0);
D = -sinLat * computeDesiredEllipsoidMagnitude(planetModel, sinLat);
}
/**
* Construct a vertical plane through a specified
* x, y and origin.
*
* @param x is the specified x value.
* @param y is the specified y value.
*/
public Plane(final double x, final double y) {
super(y, -x, 0.0);
D = 0.0;
}
/**
* Construct a plane with a specific vector, and D offset
* from origin.
* @param v is the normal vector.
* @param D is the D offset from the origin.
*/
public Plane(final Vector v, final double D) {
super(v.x, v.y, v.z);
this.D = D;
}
/** Construct a plane that is parallel to the one provided, but which is just barely numerically
* distinguishable from it, in the direction desired.
* @param basePlane is the starting plane.
* @param above is set to true if the desired plane is in the positive direction from the base plane,
* or false in the negative direction.
*/
public Plane(final Plane basePlane, final boolean above) {
this(basePlane.x, basePlane.y, basePlane.z, above?Math.nextUp(basePlane.D + MINIMUM_RESOLUTION):Math.nextDown(basePlane.D - MINIMUM_RESOLUTION));
}
/** Construct the most accurate normalized plane through an x-y point and including the Z axis.
* If none of the points can determine the plane, return null.
* @param planePoints is a set of points to choose from. The best one for constructing the most precise plane is picked.
* @return the plane
*/
public static Plane constructNormalizedZPlane(final Vector... planePoints) {
// Pick the best one (with the greatest x-y distance)
double bestDistance = 0.0;
Vector bestPoint = null;
for (final Vector point : planePoints) {
final double pointDist = point.x * point.x + point.y * point.y;
if (pointDist > bestDistance) {
bestDistance = pointDist;
bestPoint = point;
}
}
return constructNormalizedZPlane(bestPoint.x, bestPoint.y);
}
/** Construct the most accurate normalized plane through an x-z point and including the Y axis.
* If none of the points can determine the plane, return null.
* @param planePoints is a set of points to choose from. The best one for constructing the most precise plane is picked.
* @return the plane
*/
public static Plane constructNormalizedYPlane(final Vector... planePoints) {
// Pick the best one (with the greatest x-z distance)
double bestDistance = 0.0;
Vector bestPoint = null;
for (final Vector point : planePoints) {
final double pointDist = point.x * point.x + point.z * point.z;
if (pointDist > bestDistance) {
bestDistance = pointDist;
bestPoint = point;
}
}
return constructNormalizedYPlane(bestPoint.x, bestPoint.z, 0.0);
}
/** Construct the most accurate normalized plane through an y-z point and including the X axis.
* If none of the points can determine the plane, return null.
* @param planePoints is a set of points to choose from. The best one for constructing the most precise plane is picked.
* @return the plane
*/
public static Plane constructNormalizedXPlane(final Vector... planePoints) {
// Pick the best one (with the greatest y-z distance)
double bestDistance = 0.0;
Vector bestPoint = null;
for (final Vector point : planePoints) {
final double pointDist = point.y * point.y + point.z * point.z;
if (pointDist > bestDistance) {
bestDistance = pointDist;
bestPoint = point;
}
}
return constructNormalizedXPlane(bestPoint.y, bestPoint.z, 0.0);
}
/** Construct a normalized plane through an x-y point and including the Z axis.
* If the x-y point is at (0,0), return null.
* @param x is the x value.
* @param y is the y value.
* @return a plane passing through the Z axis and (x,y,0).
*/
public static Plane constructNormalizedZPlane(final double x, final double y) {
if (Math.abs(x) < MINIMUM_RESOLUTION && Math.abs(y) < MINIMUM_RESOLUTION)
return null;
final double denom = 1.0 / Math.sqrt(x*x + y*y);
return new Plane(y * denom, -x * denom, 0.0, 0.0);
}
/** Construct a normalized plane through an x-z point and parallel to the Y axis.
* If the x-z point is at (0,0), return null.
* @param x is the x value.
* @param z is the z value.
* @param DValue is the offset from the origin for the plane.
* @return a plane parallel to the Y axis and perpendicular to the x and z values given.
*/
public static Plane constructNormalizedYPlane(final double x, final double z, final double DValue) {
if (Math.abs(x) < MINIMUM_RESOLUTION && Math.abs(z) < MINIMUM_RESOLUTION)
return null;
final double denom = 1.0 / Math.sqrt(x*x + z*z);
return new Plane(z * denom, 0.0, -x * denom, DValue);
}
/** Construct a normalized plane through a y-z point and parallel to the X axis.
* If the y-z point is at (0,0), return null.
* @param y is the y value.
* @param z is the z value.
* @param DValue is the offset from the origin for the plane.
* @return a plane parallel to the X axis and perpendicular to the y and z values given.
*/
public static Plane constructNormalizedXPlane(final double y, final double z, final double DValue) {
if (Math.abs(y) < MINIMUM_RESOLUTION && Math.abs(z) < MINIMUM_RESOLUTION)
return null;
final double denom = 1.0 / Math.sqrt(y*y + z*z);
return new Plane(0.0, z * denom, -y * denom, DValue);
}
/**
* Evaluate the plane equation for a given point, as represented
* by a vector.
*
* @param v is the vector.
* @return the result of the evaluation.
*/
public double evaluate(final Vector v) {
return dotProduct(v) + D;
}
/**
* Evaluate the plane equation for a given point, as represented
* by a vector.
* @param x is the x value.
* @param y is the y value.
* @param z is the z value.
* @return the result of the evaluation.
*/
public double evaluate(final double x, final double y, final double z) {
return dotProduct(x, y, z) + D;
}
/**
* Evaluate the plane equation for a given point, as represented
* by a vector.
*
* @param v is the vector.
* @return true if the result is on the plane.
*/
public boolean evaluateIsZero(final Vector v) {
return Math.abs(evaluate(v)) < MINIMUM_RESOLUTION;
}
/**
* Evaluate the plane equation for a given point, as represented
* by a vector.
*
* @param x is the x value.
* @param y is the y value.
* @param z is the z value.
* @return true if the result is on the plane.
*/
public boolean evaluateIsZero(final double x, final double y, final double z) {
return Math.abs(evaluate(x, y, z)) < MINIMUM_RESOLUTION;
}
/**
* Build a normalized plane, so that the vector is normalized.
*
* @return the normalized plane object, or null if the plane is indeterminate.
*/
public Plane normalize() {
Vector normVect = super.normalize();
if (normVect == null)
return null;
return new Plane(normVect, this.D);
}
/** Compute arc distance from plane to a vector expressed with a {@link GeoPoint}.
* @see #arcDistance(PlanetModel, double, double, double, Membership...) */
public double arcDistance(final PlanetModel planetModel, final GeoPoint v, final Membership... bounds) {
return arcDistance(planetModel, v.x, v.y, v.z, bounds);
}
/**
* Compute arc distance from plane to a vector.
* @param planetModel is the planet model.
* @param x is the x vector value.
* @param y is the y vector value.
* @param z is the z vector value.
* @param bounds are the bounds which constrain the intersection point.
* @return the arc distance.
*/
public double arcDistance(final PlanetModel planetModel, final double x, final double y, final double z, final Membership... bounds) {
if (evaluateIsZero(x,y,z)) {
if (meetsAllBounds(x,y,z, bounds))
return 0.0;
return Double.POSITIVE_INFINITY;
}
// First, compute the perpendicular plane.
final Plane perpPlane = new Plane(this.y * z - this.z * y, this.z * x - this.x * z, this.x * y - this.y * x, 0.0);
// We need to compute the intersection of two planes on the geo surface: this one, and its perpendicular.
// Then, we need to choose which of the two points we want to compute the distance to. We pick the
// shorter distance always.
final GeoPoint[] intersectionPoints = findIntersections(planetModel, perpPlane);
// For each point, compute a linear distance, and take the minimum of them
double minDistance = Double.POSITIVE_INFINITY;
for (final GeoPoint intersectionPoint : intersectionPoints) {
if (meetsAllBounds(intersectionPoint, bounds)) {
final double theDistance = intersectionPoint.arcDistance(x,y,z);
if (theDistance < minDistance) {
minDistance = theDistance;
}
}
}
return minDistance;
}
/**
* Compute normal distance from plane to a vector.
* @param v is the vector.
* @param bounds are the bounds which constrain the intersection point.
* @return the normal distance.
*/
public double normalDistance(final Vector v, final Membership... bounds) {
return normalDistance(v.x, v.y, v.z, bounds);
}
/**
* Compute normal distance from plane to a vector.
* @param x is the vector x.
* @param y is the vector y.
* @param z is the vector z.
* @param bounds are the bounds which constrain the intersection point.
* @return the normal distance.
*/
public double normalDistance(final double x, final double y, final double z, final Membership... bounds) {
final double dist = evaluate(x,y,z);
final double perpX = x - dist * this.x;
final double perpY = y - dist * this.y;
final double perpZ = z - dist * this.z;
if (!meetsAllBounds(perpX, perpY, perpZ, bounds)) {
return Double.POSITIVE_INFINITY;
}
return Math.abs(dist);
}
/**
* Compute normal distance squared from plane to a vector.
* @param v is the vector.
* @param bounds are the bounds which constrain the intersection point.
* @return the normal distance squared.
*/
public double normalDistanceSquared(final Vector v, final Membership... bounds) {
return normalDistanceSquared(v.x, v.y, v.z, bounds);
}
/**
* Compute normal distance squared from plane to a vector.
* @param x is the vector x.
* @param y is the vector y.
* @param z is the vector z.
* @param bounds are the bounds which constrain the intersection point.
* @return the normal distance squared.
*/
public double normalDistanceSquared(final double x, final double y, final double z, final Membership... bounds) {
final double normal = normalDistance(x,y,z,bounds);
if (normal == Double.POSITIVE_INFINITY)
return normal;
return normal * normal;
}
/**
* Compute linear distance from plane to a vector. This is defined
* as the distance from the given point to the nearest intersection of
* this plane with the planet surface.
* @param planetModel is the planet model.
* @param v is the point.
* @param bounds are the bounds which constrain the intersection point.
* @return the linear distance.
*/
public double linearDistance(final PlanetModel planetModel, final GeoPoint v, final Membership... bounds) {
return linearDistance(planetModel, v.x, v.y, v.z, bounds);
}
/**
* Compute linear distance from plane to a vector. This is defined
* as the distance from the given point to the nearest intersection of
* this plane with the planet surface.
* @param planetModel is the planet model.
* @param x is the vector x.
* @param y is the vector y.
* @param z is the vector z.
* @param bounds are the bounds which constrain the intersection point.
* @return the linear distance.
*/
public double linearDistance(final PlanetModel planetModel, final double x, final double y, final double z, final Membership... bounds) {
if (evaluateIsZero(x,y,z)) {
if (meetsAllBounds(x,y,z, bounds))
return 0.0;
return Double.POSITIVE_INFINITY;
}
// First, compute the perpendicular plane.
final Plane perpPlane = new Plane(this.y * z - this.z * y, this.z * x - this.x * z, this.x * y - this.y * x, 0.0);
// We need to compute the intersection of two planes on the geo surface: this one, and its perpendicular.
// Then, we need to choose which of the two points we want to compute the distance to. We pick the
// shorter distance always.
final GeoPoint[] intersectionPoints = findIntersections(planetModel, perpPlane);
// For each point, compute a linear distance, and take the minimum of them
double minDistance = Double.POSITIVE_INFINITY;
for (final GeoPoint intersectionPoint : intersectionPoints) {
if (meetsAllBounds(intersectionPoint, bounds)) {
final double theDistance = intersectionPoint.linearDistance(x,y,z);
if (theDistance < minDistance) {
minDistance = theDistance;
}
}
}
return minDistance;
}
/**
* Compute linear distance squared from plane to a vector. This is defined
* as the distance from the given point to the nearest intersection of
* this plane with the planet surface.
* @param planetModel is the planet model.
* @param v is the point.
* @param bounds are the bounds which constrain the intersection point.
* @return the linear distance squared.
*/
public double linearDistanceSquared(final PlanetModel planetModel, final GeoPoint v, final Membership... bounds) {
return linearDistanceSquared(planetModel, v.x, v.y, v.z, bounds);
}
/**
* Compute linear distance squared from plane to a vector. This is defined
* as the distance from the given point to the nearest intersection of
* this plane with the planet surface.
* @param planetModel is the planet model.
* @param x is the vector x.
* @param y is the vector y.
* @param z is the vector z.
* @param bounds are the bounds which constrain the intersection point.
* @return the linear distance squared.
*/
public double linearDistanceSquared(final PlanetModel planetModel, final double x, final double y, final double z, final Membership... bounds) {
final double linearDistance = linearDistance(planetModel, x, y, z, bounds);
return linearDistance * linearDistance;
}
/**
* Find points on the boundary of the intersection of a plane and the unit sphere,
* given a starting point, and ending point, and a list of proportions of the arc (e.g. 0.25, 0.5, 0.75).
* The angle between the starting point and ending point is assumed to be less than pi.
* @param planetModel is the planet model.
* @param start is the start point.
* @param end is the end point.
* @param proportions is an array of fractional proportions measured between start and end.
* @return an array of points corresponding to the proportions passed in.
*/
public GeoPoint[] interpolate(final PlanetModel planetModel, final GeoPoint start, final GeoPoint end, final double[] proportions) {
// Steps:
// (1) Translate (x0,y0,z0) of endpoints into origin-centered place:
// x1 = x0 + D*A
// y1 = y0 + D*B
// z1 = z0 + D*C
// (2) Rotate counterclockwise in x-y:
// ra = -atan2(B,A)
// x2 = x1 cos ra - y1 sin ra
// y2 = x1 sin ra + y1 cos ra
// z2 = z1
// Faster:
// cos ra = A/sqrt(A^2+B^2+C^2)
// sin ra = -B/sqrt(A^2+B^2+C^2)
// cos (-ra) = A/sqrt(A^2+B^2+C^2)
// sin (-ra) = B/sqrt(A^2+B^2+C^2)
// (3) Rotate clockwise in x-z:
// ha = pi/2 - asin(C/sqrt(A^2+B^2+C^2))
// x3 = x2 cos ha - z2 sin ha
// y3 = y2
// z3 = x2 sin ha + z2 cos ha
// At this point, z3 should be zero.
// Faster:
// sin(ha) = cos(asin(C/sqrt(A^2+B^2+C^2))) = sqrt(1 - C^2/(A^2+B^2+C^2)) = sqrt(A^2+B^2)/sqrt(A^2+B^2+C^2)
// cos(ha) = sin(asin(C/sqrt(A^2+B^2+C^2))) = C/sqrt(A^2+B^2+C^2)
// (4) Compute interpolations by getting longitudes of original points
// la = atan2(y3,x3)
// (5) Rotate new points (xN0, yN0, zN0) counter-clockwise in x-z:
// ha = -(pi - asin(C/sqrt(A^2+B^2+C^2)))
// xN1 = xN0 cos ha - zN0 sin ha
// yN1 = yN0
// zN1 = xN0 sin ha + zN0 cos ha
// (6) Rotate new points clockwise in x-y:
// ra = atan2(B,A)
// xN2 = xN1 cos ra - yN1 sin ra
// yN2 = xN1 sin ra + yN1 cos ra
// zN2 = zN1
// (7) Translate new points:
// xN3 = xN2 - D*A
// yN3 = yN2 - D*B
// zN3 = zN2 - D*C
// First, calculate the angles and their sin/cos values
double A = x;
double B = y;
double C = z;
// Translation amounts
final double transX = -D * A;
final double transY = -D * B;
final double transZ = -D * C;
double cosRA;
double sinRA;
double cosHA;
double sinHA;
double magnitude = magnitude();
if (magnitude >= MINIMUM_RESOLUTION) {
final double denom = 1.0 / magnitude;
A *= denom;
B *= denom;
C *= denom;
// cos ra = A/sqrt(A^2+B^2+C^2)
// sin ra = -B/sqrt(A^2+B^2+C^2)
// cos (-ra) = A/sqrt(A^2+B^2+C^2)
// sin (-ra) = B/sqrt(A^2+B^2+C^2)
final double xyMagnitude = Math.sqrt(A * A + B * B);
if (xyMagnitude >= MINIMUM_RESOLUTION) {
final double xyDenom = 1.0 / xyMagnitude;
cosRA = A * xyDenom;
sinRA = -B * xyDenom;
} else {
cosRA = 1.0;
sinRA = 0.0;
}
// sin(ha) = cos(asin(C/sqrt(A^2+B^2+C^2))) = sqrt(1 - C^2/(A^2+B^2+C^2)) = sqrt(A^2+B^2)/sqrt(A^2+B^2+C^2)
// cos(ha) = sin(asin(C/sqrt(A^2+B^2+C^2))) = C/sqrt(A^2+B^2+C^2)
sinHA = xyMagnitude;
cosHA = C;
} else {
cosRA = 1.0;
sinRA = 0.0;
cosHA = 1.0;
sinHA = 0.0;
}
// Forward-translate the start and end points
final Vector modifiedStart = modify(start, transX, transY, transZ, sinRA, cosRA, sinHA, cosHA);
final Vector modifiedEnd = modify(end, transX, transY, transZ, sinRA, cosRA, sinHA, cosHA);
if (Math.abs(modifiedStart.z) >= MINIMUM_RESOLUTION)
throw new IllegalArgumentException("Start point was not on plane: " + modifiedStart.z);
if (Math.abs(modifiedEnd.z) >= MINIMUM_RESOLUTION)
throw new IllegalArgumentException("End point was not on plane: " + modifiedEnd.z);
// Compute the angular distance between start and end point
final double startAngle = Math.atan2(modifiedStart.y, modifiedStart.x);
final double endAngle = Math.atan2(modifiedEnd.y, modifiedEnd.x);
final double startMagnitude = Math.sqrt(modifiedStart.x * modifiedStart.x + modifiedStart.y * modifiedStart.y);
double delta;
double newEndAngle = endAngle;
while (newEndAngle < startAngle) {
newEndAngle += Math.PI * 2.0;
}
if (newEndAngle - startAngle <= Math.PI) {
delta = newEndAngle - startAngle;
} else {
double newStartAngle = startAngle;
while (newStartAngle < endAngle) {
newStartAngle += Math.PI * 2.0;
}
delta = newStartAngle - endAngle;
}
final GeoPoint[] returnValues = new GeoPoint[proportions.length];
for (int i = 0; i < returnValues.length; i++) {
final double newAngle = startAngle + proportions[i] * delta;
final double sinNewAngle = Math.sin(newAngle);
final double cosNewAngle = Math.cos(newAngle);
final Vector newVector = new Vector(cosNewAngle * startMagnitude, sinNewAngle * startMagnitude, 0.0);
returnValues[i] = reverseModify(planetModel, newVector, transX, transY, transZ, sinRA, cosRA, sinHA, cosHA);
}
return returnValues;
}
/**
* Modify a point to produce a vector in translated/rotated space.
* @param start is the start point.
* @param transX is the translation x value.
* @param transY is the translation y value.
* @param transZ is the translation z value.
* @param sinRA is the sine of the ascension angle.
* @param cosRA is the cosine of the ascension angle.
* @param sinHA is the sine of the height angle.
* @param cosHA is the cosine of the height angle.
* @return the modified point.
*/
protected static Vector modify(final GeoPoint start, final double transX, final double transY, final double transZ,
final double sinRA, final double cosRA, final double sinHA, final double cosHA) {
return start.translate(transX, transY, transZ).rotateXY(sinRA, cosRA).rotateXZ(sinHA, cosHA);
}
/**
* Reverse modify a point to produce a GeoPoint in normal space.
* @param planetModel is the planet model.
* @param point is the translated point.
* @param transX is the translation x value.
* @param transY is the translation y value.
* @param transZ is the translation z value.
* @param sinRA is the sine of the ascension angle.
* @param cosRA is the cosine of the ascension angle.
* @param sinHA is the sine of the height angle.
* @param cosHA is the cosine of the height angle.
* @return the original point.
*/
protected static GeoPoint reverseModify(final PlanetModel planetModel,
final Vector point, final double transX, final double transY, final double transZ,
final double sinRA, final double cosRA, final double sinHA, final double cosHA) {
final Vector result = point.rotateXZ(-sinHA, cosHA).rotateXY(-sinRA, cosRA).translate(-transX, -transY, -transZ);
return planetModel.createSurfacePoint(result.x, result.y, result.z);
}
/**
* Find the intersection points between two planes, given a set of bounds.
* @param planetModel is the planet model.
* @param q is the plane to intersect with.
* @param bounds are the bounds to consider to determine legal intersection points.
* @return the set of legal intersection points, or null if the planes are numerically identical.
*/
public GeoPoint[] findIntersections(final PlanetModel planetModel, final Plane q, final Membership... bounds) {
if (isNumericallyIdentical(q)) {
return null;
}
return findIntersections(planetModel, q, bounds, NO_BOUNDS);
}
/**
* Find the points between two planes, where one plane crosses the other, given a set of bounds.
* Crossing is not just intersection; the planes cannot touch at just one point on the ellipsoid,
* but must cross at two.
*
* @param planetModel is the planet model.
* @param q is the plane to intersect with.
* @param bounds are the bounds to consider to determine legal intersection points.
* @return the set of legal crossing points, or null if the planes are numerically identical.
*/
public GeoPoint[] findCrossings(final PlanetModel planetModel, final Plane q, final Membership... bounds) {
if (isNumericallyIdentical(q)) {
return null;
}
return findCrossings(planetModel, q, bounds, NO_BOUNDS);
}
/**
* Checks if three points are coplanar in any of the three planes they can describe.
* The planes are all assumed to go through the origin.
*
* @param A The first point.
* @param B The second point.
* @param C The third point
* @return true if provided points are coplanar in any of the three planes they can describe.
*/
public static boolean arePointsCoplanar(final GeoPoint A, final GeoPoint B, final GeoPoint C) {
return Vector.crossProductEvaluateIsZero(A, B, C) ||
Vector.crossProductEvaluateIsZero(A, C, B) ||
Vector.crossProductEvaluateIsZero(B, C, A);
}
/**
* Find the intersection points between two planes, given a set of bounds.
*
* @param planetModel is the planet model to use in finding points.
* @param q is the plane to intersect with.
* @param bounds is the set of bounds.
* @param moreBounds is another set of bounds.
* @return the intersection point(s) on the unit sphere, if there are any.
*/
protected GeoPoint[] findIntersections(final PlanetModel planetModel, final Plane q, final Membership[] bounds, final Membership[] moreBounds) {
//System.err.println("Looking for intersection between plane "+this+" and plane "+q+" within bounds");
// Unnormalized, unchecked...
final double lineVectorX = y * q.z - z * q.y;
final double lineVectorY = z * q.x - x * q.z;
final double lineVectorZ = x * q.y - y * q.x;
if (Math.abs(lineVectorX) < MINIMUM_RESOLUTION && Math.abs(lineVectorY) < MINIMUM_RESOLUTION && Math.abs(lineVectorZ) < MINIMUM_RESOLUTION) {
// Degenerate case: parallel planes
//System.err.println(" planes are parallel - no intersection");
return NO_POINTS;
}
// The line will have the equation: A t + A0 = x, B t + B0 = y, C t + C0 = z.
// We have A, B, and C. In order to come up with A0, B0, and C0, we need to find a point that is on both planes.
// To do this, we find the largest vector value (either x, y, or z), and look for a point that solves both plane equations
// simultaneous. For example, let's say that the vector is (0.5,0.5,1), and the two plane equations are:
// 0.7 x + 0.3 y + 0.1 z + 0.0 = 0
// and
// 0.9 x - 0.1 y + 0.2 z + 4.0 = 0
// Then we'd pick z = 0, so the equations to solve for x and y would be:
// 0.7 x + 0.3y = 0.0
// 0.9 x - 0.1y = -4.0
// ... which can readily be solved using standard linear algebra. Generally:
// Q0 x + R0 y = S0
// Q1 x + R1 y = S1
// ... can be solved by Cramer's rule:
// x = det(S0 R0 / S1 R1) / det(Q0 R0 / Q1 R1)
// y = det(Q0 S0 / Q1 S1) / det(Q0 R0 / Q1 R1)
// ... where det( a b / c d ) = ad - bc, so:
// x = (S0 * R1 - R0 * S1) / (Q0 * R1 - R0 * Q1)
// y = (Q0 * S1 - S0 * Q1) / (Q0 * R1 - R0 * Q1)
double x0;
double y0;
double z0;
// We try to maximize the determinant in the denominator
final double denomYZ = this.y * q.z - this.z * q.y;
final double denomXZ = this.x * q.z - this.z * q.x;
final double denomXY = this.x * q.y - this.y * q.x;
if (Math.abs(denomYZ) >= Math.abs(denomXZ) && Math.abs(denomYZ) >= Math.abs(denomXY)) {
// X is the biggest, so our point will have x0 = 0.0
if (Math.abs(denomYZ) < MINIMUM_RESOLUTION_SQUARED) {
//System.err.println(" Denominator is zero: no intersection");
return NO_POINTS;
}
final double denom = 1.0 / denomYZ;
x0 = 0.0;
y0 = (-this.D * q.z - this.z * -q.D) * denom;
z0 = (this.y * -q.D + this.D * q.y) * denom;
} else if (Math.abs(denomXZ) >= Math.abs(denomXY) && Math.abs(denomXZ) >= Math.abs(denomYZ)) {
// Y is the biggest, so y0 = 0.0
if (Math.abs(denomXZ) < MINIMUM_RESOLUTION_SQUARED) {
//System.err.println(" Denominator is zero: no intersection");
return NO_POINTS;
}
final double denom = 1.0 / denomXZ;
x0 = (-this.D * q.z - this.z * -q.D) * denom;
y0 = 0.0;
z0 = (this.x * -q.D + this.D * q.x) * denom;
} else {
// Z is the biggest, so Z0 = 0.0
if (Math.abs(denomXY) < MINIMUM_RESOLUTION_SQUARED) {
//System.err.println(" Denominator is zero: no intersection");
return NO_POINTS;
}
final double denom = 1.0 / denomXY;
x0 = (-this.D * q.y - this.y * -q.D) * denom;
y0 = (this.x * -q.D + this.D * q.x) * denom;
z0 = 0.0;
}
// Once an intersecting line is determined, the next step is to intersect that line with the ellipsoid, which
// will yield zero, one, or two points.
// The ellipsoid equation: 1,0 = x^2/a^2 + y^2/b^2 + z^2/c^2
// 1.0 = (At+A0)^2/a^2 + (Bt+B0)^2/b^2 + (Ct+C0)^2/c^2
// A^2 t^2 / a^2 + 2AA0t / a^2 + A0^2 / a^2 + B^2 t^2 / b^2 + 2BB0t / b^2 + B0^2 / b^2 + C^2 t^2 / c^2 + 2CC0t / c^2 + C0^2 / c^2 - 1,0 = 0.0
// [A^2 / a^2 + B^2 / b^2 + C^2 / c^2] t^2 + [2AA0 / a^2 + 2BB0 / b^2 + 2CC0 / c^2] t + [A0^2 / a^2 + B0^2 / b^2 + C0^2 / c^2 - 1,0] = 0.0
// Use the quadratic formula to determine t values and candidate point(s)
final double A = lineVectorX * lineVectorX * planetModel.inverseAbSquared +
lineVectorY * lineVectorY * planetModel.inverseAbSquared +
lineVectorZ * lineVectorZ * planetModel.inverseCSquared;
final double B = 2.0 * (lineVectorX * x0 * planetModel.inverseAbSquared + lineVectorY * y0 * planetModel.inverseAbSquared + lineVectorZ * z0 * planetModel.inverseCSquared);
final double C = x0 * x0 * planetModel.inverseAbSquared + y0 * y0 * planetModel.inverseAbSquared + z0 * z0 * planetModel.inverseCSquared - 1.0;
final double BsquaredMinus = B * B - 4.0 * A * C;
if (Math.abs(BsquaredMinus) < MINIMUM_RESOLUTION_SQUARED) {
//System.err.println(" One point of intersection");
final double inverse2A = 1.0 / (2.0 * A);
// One solution only
final double t = -B * inverse2A;
// Maybe we can save ourselves the cost of construction of a point?
final double pointX = lineVectorX * t + x0;
final double pointY = lineVectorY * t + y0;
final double pointZ = lineVectorZ * t + z0;
for (final Membership bound : bounds) {
if (!bound.isWithin(pointX, pointY, pointZ)) {
return NO_POINTS;
}
}
for (final Membership bound : moreBounds) {
if (!bound.isWithin(pointX, pointY, pointZ)) {
return NO_POINTS;
}
}
return new GeoPoint[]{new GeoPoint(pointX, pointY, pointZ)};
} else if (BsquaredMinus > 0.0) {
//System.err.println(" Two points of intersection");
final double inverse2A = 1.0 / (2.0 * A);
// Two solutions
final double sqrtTerm = Math.sqrt(BsquaredMinus);
final double t1 = (-B + sqrtTerm) * inverse2A;
final double t2 = (-B - sqrtTerm) * inverse2A;
// Up to two points being returned. Do what we can to save on object creation though.
final double point1X = lineVectorX * t1 + x0;
final double point1Y = lineVectorY * t1 + y0;
final double point1Z = lineVectorZ * t1 + z0;
final double point2X = lineVectorX * t2 + x0;
final double point2Y = lineVectorY * t2 + y0;
final double point2Z = lineVectorZ * t2 + z0;
boolean point1Valid = true;
boolean point2Valid = true;
for (final Membership bound : bounds) {
if (!bound.isWithin(point1X, point1Y, point1Z)) {
point1Valid = false;
break;
}
}
if (point1Valid) {
for (final Membership bound : moreBounds) {
if (!bound.isWithin(point1X, point1Y, point1Z)) {
point1Valid = false;
break;
}
}
}
for (final Membership bound : bounds) {
if (!bound.isWithin(point2X, point2Y, point2Z)) {
point2Valid = false;
break;
}
}
if (point2Valid) {
for (final Membership bound : moreBounds) {
if (!bound.isWithin(point2X, point2Y, point2Z)) {
point2Valid = false;
break;
}
}
}
if (point1Valid && point2Valid) {
return new GeoPoint[]{new GeoPoint(point1X, point1Y, point1Z), new GeoPoint(point2X, point2Y, point2Z)};
}
if (point1Valid) {
return new GeoPoint[]{new GeoPoint(point1X, point1Y, point1Z)};
}
if (point2Valid) {
return new GeoPoint[]{new GeoPoint(point2X, point2Y, point2Z)};
}
return NO_POINTS;
} else {
//System.err.println(" no solutions - no intersection");
return NO_POINTS;
}
}
/**
* Find the points between two planes, where one plane crosses the other, given a set of bounds.
* Crossing is not just intersection; the planes cannot touch at just one point on the ellipsoid,
* but must cross at two.
*
* @param planetModel is the planet model to use in finding points.
* @param q is the plane to intersect with.
* @param bounds is the set of bounds.
* @param moreBounds is another set of bounds.
* @return the intersection point(s) on the ellipsoid, if there are any.
*/
protected GeoPoint[] findCrossings(final PlanetModel planetModel, final Plane q, final Membership[] bounds, final Membership[] moreBounds) {
// This code in this method is very similar to findIntersections(), but eliminates the cases where
// crossings are detected.
// Unnormalized, unchecked...
final double lineVectorX = y * q.z - z * q.y;
final double lineVectorY = z * q.x - x * q.z;
final double lineVectorZ = x * q.y - y * q.x;
if (Math.abs(lineVectorX) < MINIMUM_RESOLUTION && Math.abs(lineVectorY) < MINIMUM_RESOLUTION && Math.abs(lineVectorZ) < MINIMUM_RESOLUTION) {
// Degenerate case: parallel planes
return NO_POINTS;
}
// The line will have the equation: A t + A0 = x, B t + B0 = y, C t + C0 = z.
// We have A, B, and C. In order to come up with A0, B0, and C0, we need to find a point that is on both planes.
// To do this, we find the largest vector value (either x, y, or z), and look for a point that solves both plane equations
// simultaneous. For example, let's say that the vector is (0.5,0.5,1), and the two plane equations are:
// 0.7 x + 0.3 y + 0.1 z + 0.0 = 0
// and
// 0.9 x - 0.1 y + 0.2 z + 4.0 = 0
// Then we'd pick z = 0, so the equations to solve for x and y would be:
// 0.7 x + 0.3y = 0.0
// 0.9 x - 0.1y = -4.0
// ... which can readily be solved using standard linear algebra. Generally:
// Q0 x + R0 y = S0
// Q1 x + R1 y = S1
// ... can be solved by Cramer's rule:
// x = det(S0 R0 / S1 R1) / det(Q0 R0 / Q1 R1)
// y = det(Q0 S0 / Q1 S1) / det(Q0 R0 / Q1 R1)
// ... where det( a b / c d ) = ad - bc, so:
// x = (S0 * R1 - R0 * S1) / (Q0 * R1 - R0 * Q1)
// y = (Q0 * S1 - S0 * Q1) / (Q0 * R1 - R0 * Q1)
double x0;
double y0;
double z0;
// We try to maximize the determinant in the denominator
final double denomYZ = this.y * q.z - this.z * q.y;
final double denomXZ = this.x * q.z - this.z * q.x;
final double denomXY = this.x * q.y - this.y * q.x;
if (Math.abs(denomYZ) >= Math.abs(denomXZ) && Math.abs(denomYZ) >= Math.abs(denomXY)) {
// X is the biggest, so our point will have x0 = 0.0
if (Math.abs(denomYZ) < MINIMUM_RESOLUTION_SQUARED) {
return NO_POINTS;
}
final double denom = 1.0 / denomYZ;
x0 = 0.0;
y0 = (-this.D * q.z - this.z * -q.D) * denom;
z0 = (this.y * -q.D + this.D * q.y) * denom;
} else if (Math.abs(denomXZ) >= Math.abs(denomXY) && Math.abs(denomXZ) >= Math.abs(denomYZ)) {
// Y is the biggest, so y0 = 0.0
if (Math.abs(denomXZ) < MINIMUM_RESOLUTION_SQUARED) {
return NO_POINTS;
}
final double denom = 1.0 / denomXZ;
x0 = (-this.D * q.z - this.z * -q.D) * denom;
y0 = 0.0;
z0 = (this.x * -q.D + this.D * q.x) * denom;
} else {
// Z is the biggest, so Z0 = 0.0
if (Math.abs(denomXY) < MINIMUM_RESOLUTION_SQUARED) {
return NO_POINTS;
}
final double denom = 1.0 / denomXY;
x0 = (-this.D * q.y - this.y * -q.D) * denom;
y0 = (this.x * -q.D + this.D * q.x) * denom;
z0 = 0.0;
}
// Once an intersecting line is determined, the next step is to intersect that line with the ellipsoid, which
// will yield zero, one, or two points.
// The ellipsoid equation: 1,0 = x^2/a^2 + y^2/b^2 + z^2/c^2
// 1.0 = (At+A0)^2/a^2 + (Bt+B0)^2/b^2 + (Ct+C0)^2/c^2
// A^2 t^2 / a^2 + 2AA0t / a^2 + A0^2 / a^2 + B^2 t^2 / b^2 + 2BB0t / b^2 + B0^2 / b^2 + C^2 t^2 / c^2 + 2CC0t / c^2 + C0^2 / c^2 - 1,0 = 0.0
// [A^2 / a^2 + B^2 / b^2 + C^2 / c^2] t^2 + [2AA0 / a^2 + 2BB0 / b^2 + 2CC0 / c^2] t + [A0^2 / a^2 + B0^2 / b^2 + C0^2 / c^2 - 1,0] = 0.0
// Use the quadratic formula to determine t values and candidate point(s)
final double A = lineVectorX * lineVectorX * planetModel.inverseAbSquared +
lineVectorY * lineVectorY * planetModel.inverseAbSquared +
lineVectorZ * lineVectorZ * planetModel.inverseCSquared;
final double B = 2.0 * (lineVectorX * x0 * planetModel.inverseAbSquared + lineVectorY * y0 * planetModel.inverseAbSquared + lineVectorZ * z0 * planetModel.inverseCSquared);
final double C = x0 * x0 * planetModel.inverseAbSquared + y0 * y0 * planetModel.inverseAbSquared + z0 * z0 * planetModel.inverseCSquared - 1.0;
final double BsquaredMinus = B * B - 4.0 * A * C;
if (Math.abs(BsquaredMinus) < MINIMUM_RESOLUTION_SQUARED) {
// One point of intersection: cannot be a crossing.
return NO_POINTS;
} else if (BsquaredMinus > 0.0) {
final double inverse2A = 1.0 / (2.0 * A);
// Two solutions
final double sqrtTerm = Math.sqrt(BsquaredMinus);
final double t1 = (-B + sqrtTerm) * inverse2A;
final double t2 = (-B - sqrtTerm) * inverse2A;
// Up to two points being returned. Do what we can to save on object creation though.
final double point1X = lineVectorX * t1 + x0;
final double point1Y = lineVectorY * t1 + y0;
final double point1Z = lineVectorZ * t1 + z0;
final double point2X = lineVectorX * t2 + x0;
final double point2Y = lineVectorY * t2 + y0;
final double point2Z = lineVectorZ * t2 + z0;
boolean point1Valid = true;
boolean point2Valid = true;
for (final Membership bound : bounds) {
if (!bound.isWithin(point1X, point1Y, point1Z)) {
point1Valid = false;
break;
}
}
if (point1Valid) {
for (final Membership bound : moreBounds) {
if (!bound.isWithin(point1X, point1Y, point1Z)) {
point1Valid = false;
break;
}
}
}
for (final Membership bound : bounds) {
if (!bound.isWithin(point2X, point2Y, point2Z)) {
point2Valid = false;
break;
}
}
if (point2Valid) {
for (final Membership bound : moreBounds) {
if (!bound.isWithin(point2X, point2Y, point2Z)) {
point2Valid = false;
break;
}
}
}
if (point1Valid && point2Valid) {
return new GeoPoint[]{new GeoPoint(point1X, point1Y, point1Z), new GeoPoint(point2X, point2Y, point2Z)};
}
if (point1Valid) {
return new GeoPoint[]{new GeoPoint(point1X, point1Y, point1Z)};
}
if (point2Valid) {
return new GeoPoint[]{new GeoPoint(point2X, point2Y, point2Z)};
}
return NO_POINTS;
} else {
// No solutions.
return NO_POINTS;
}
}
/**
* Record intersection points for planes with error bounds.
* This method calls the Bounds object with every intersection point it can find that matches the criteria.
* Each plane is considered to have two sides, one that is D + MINIMUM_RESOLUTION, and one that is
* D - MINIMUM_RESOLUTION. Both are examined and intersection points determined.
*/
protected void findIntersectionBounds(final PlanetModel planetModel, final Bounds boundsInfo, final Plane q, final Membership... bounds) {
//System.out.println("Finding intersection bounds");
// Unnormalized, unchecked...
final double lineVectorX = y * q.z - z * q.y;
final double lineVectorY = z * q.x - x * q.z;
final double lineVectorZ = x * q.y - y * q.x;
if (Math.abs(lineVectorX) < MINIMUM_RESOLUTION && Math.abs(lineVectorY) < MINIMUM_RESOLUTION && Math.abs(lineVectorZ) < MINIMUM_RESOLUTION) {
// Degenerate case: parallel planes
//System.out.println(" planes are parallel - no intersection");
return;
}
// The line will have the equation: A t + A0 = x, B t + B0 = y, C t + C0 = z.
// We have A, B, and C. In order to come up with A0, B0, and C0, we need to find a point that is on both planes.
// To do this, we find the largest vector value (either x, y, or z), and look for a point that solves both plane equations
// simultaneous. For example, let's say that the vector is (0.5,0.5,1), and the two plane equations are:
// 0.7 x + 0.3 y + 0.1 z + 0.0 = 0
// and
// 0.9 x - 0.1 y + 0.2 z + 4.0 = 0
// Then we'd pick z = 0, so the equations to solve for x and y would be:
// 0.7 x + 0.3y = 0.0
// 0.9 x - 0.1y = -4.0
// ... which can readily be solved using standard linear algebra. Generally:
// Q0 x + R0 y = S0
// Q1 x + R1 y = S1
// ... can be solved by Cramer's rule:
// x = det(S0 R0 / S1 R1) / det(Q0 R0 / Q1 R1)
// y = det(Q0 S0 / Q1 S1) / det(Q0 R0 / Q1 R1)
// ... where det( a b / c d ) = ad - bc, so:
// x = (S0 * R1 - R0 * S1) / (Q0 * R1 - R0 * Q1)
// y = (Q0 * S1 - S0 * Q1) / (Q0 * R1 - R0 * Q1)
// We try to maximize the determinant in the denominator
final double denomYZ = this.y * q.z - this.z * q.y;
final double denomXZ = this.x * q.z - this.z * q.x;
final double denomXY = this.x * q.y - this.y * q.x;
if (Math.abs(denomYZ) >= Math.abs(denomXZ) && Math.abs(denomYZ) >= Math.abs(denomXY)) {
//System.out.println("X biggest");
// X is the biggest, so our point will have x0 = 0.0
if (Math.abs(denomYZ) < MINIMUM_RESOLUTION_SQUARED) {
//System.out.println(" Denominator is zero: no intersection");
return;
}
final double denom = 1.0 / denomYZ;
// Each value of D really is two values of D. That makes 4 combinations.
recordLineBounds(planetModel, boundsInfo,
lineVectorX, lineVectorY, lineVectorZ,
0.0, (-(this.D+MINIMUM_RESOLUTION) * q.z - this.z * -(q.D+MINIMUM_RESOLUTION)) * denom, (this.y * -(q.D+MINIMUM_RESOLUTION) + (this.D+MINIMUM_RESOLUTION) * q.y) * denom,
bounds);
recordLineBounds(planetModel, boundsInfo,
lineVectorX, lineVectorY, lineVectorZ,
0.0, (-(this.D-MINIMUM_RESOLUTION) * q.z - this.z * -(q.D+MINIMUM_RESOLUTION)) * denom, (this.y * -(q.D+MINIMUM_RESOLUTION) + (this.D-MINIMUM_RESOLUTION) * q.y) * denom,
bounds);
recordLineBounds(planetModel, boundsInfo,
lineVectorX, lineVectorY, lineVectorZ,
0.0, (-(this.D+MINIMUM_RESOLUTION) * q.z - this.z * -(q.D-MINIMUM_RESOLUTION)) * denom, (this.y * -(q.D-MINIMUM_RESOLUTION) + (this.D+MINIMUM_RESOLUTION) * q.y) * denom,
bounds);
recordLineBounds(planetModel, boundsInfo,
lineVectorX, lineVectorY, lineVectorZ,
0.0, (-(this.D-MINIMUM_RESOLUTION) * q.z - this.z * -(q.D-MINIMUM_RESOLUTION)) * denom, (this.y * -(q.D-MINIMUM_RESOLUTION) + (this.D-MINIMUM_RESOLUTION) * q.y) * denom,
bounds);
} else if (Math.abs(denomXZ) >= Math.abs(denomXY) && Math.abs(denomXZ) >= Math.abs(denomYZ)) {
//System.out.println("Y biggest");
// Y is the biggest, so y0 = 0.0
if (Math.abs(denomXZ) < MINIMUM_RESOLUTION_SQUARED) {
//System.out.println(" Denominator is zero: no intersection");
return;
}
final double denom = 1.0 / denomXZ;
recordLineBounds(planetModel, boundsInfo,
lineVectorX, lineVectorY, lineVectorZ,
(-(this.D+MINIMUM_RESOLUTION) * q.z - this.z * -(q.D+MINIMUM_RESOLUTION)) * denom, 0.0, (this.x * -(q.D+MINIMUM_RESOLUTION) + (this.D+MINIMUM_RESOLUTION) * q.x) * denom,
bounds);
recordLineBounds(planetModel, boundsInfo,
lineVectorX, lineVectorY, lineVectorZ,
(-(this.D-MINIMUM_RESOLUTION) * q.z - this.z * -(q.D+MINIMUM_RESOLUTION)) * denom, 0.0, (this.x * -(q.D+MINIMUM_RESOLUTION) + (this.D-MINIMUM_RESOLUTION) * q.x) * denom,
bounds);
recordLineBounds(planetModel, boundsInfo,
lineVectorX, lineVectorY, lineVectorZ,
(-(this.D+MINIMUM_RESOLUTION) * q.z - this.z * -(q.D-MINIMUM_RESOLUTION)) * denom, 0.0, (this.x * -(q.D-MINIMUM_RESOLUTION) + (this.D+MINIMUM_RESOLUTION) * q.x) * denom,
bounds);
recordLineBounds(planetModel, boundsInfo,
lineVectorX, lineVectorY, lineVectorZ,
(-(this.D-MINIMUM_RESOLUTION) * q.z - this.z * -(q.D-MINIMUM_RESOLUTION)) * denom, 0.0, (this.x * -(q.D-MINIMUM_RESOLUTION) + (this.D-MINIMUM_RESOLUTION) * q.x) * denom,
bounds);
} else {
//System.out.println("Z biggest");
// Z is the biggest, so Z0 = 0.0
if (Math.abs(denomXY) < MINIMUM_RESOLUTION_SQUARED) {
//System.out.println(" Denominator is zero: no intersection");
return;
}
final double denom = 1.0 / denomXY;
recordLineBounds(planetModel, boundsInfo,
lineVectorX, lineVectorY, lineVectorZ,
(-(this.D+MINIMUM_RESOLUTION) * q.y - this.y * -(q.D+MINIMUM_RESOLUTION)) * denom, (this.x * -(q.D+MINIMUM_RESOLUTION) + (this.D+MINIMUM_RESOLUTION) * q.x) * denom, 0.0,
bounds);
recordLineBounds(planetModel, boundsInfo,
lineVectorX, lineVectorY, lineVectorZ,
(-(this.D-MINIMUM_RESOLUTION) * q.y - this.y * -(q.D+MINIMUM_RESOLUTION)) * denom, (this.x * -(q.D+MINIMUM_RESOLUTION) + (this.D-MINIMUM_RESOLUTION) * q.x) * denom, 0.0,
bounds);
recordLineBounds(planetModel, boundsInfo,
lineVectorX, lineVectorY, lineVectorZ,
(-(this.D+MINIMUM_RESOLUTION) * q.y - this.y * -(q.D-MINIMUM_RESOLUTION)) * denom, (this.x * -(q.D-MINIMUM_RESOLUTION) + (this.D+MINIMUM_RESOLUTION) * q.x) * denom, 0.0,
bounds);
recordLineBounds(planetModel, boundsInfo,
lineVectorX, lineVectorY, lineVectorZ,
(-(this.D-MINIMUM_RESOLUTION) * q.y - this.y * -(q.D-MINIMUM_RESOLUTION)) * denom, (this.x * -(q.D-MINIMUM_RESOLUTION) + (this.D-MINIMUM_RESOLUTION) * q.x) * denom, 0.0,
bounds);
}
}
private static void recordLineBounds(final PlanetModel planetModel,
final Bounds boundsInfo,
final double lineVectorX, final double lineVectorY, final double lineVectorZ,
final double x0, final double y0, final double z0,
final Membership... bounds) {
// Once an intersecting line is determined, the next step is to intersect that line with the ellipsoid, which
// will yield zero, one, or two points.
// The ellipsoid equation: 1,0 = x^2/a^2 + y^2/b^2 + z^2/c^2
// 1.0 = (At+A0)^2/a^2 + (Bt+B0)^2/b^2 + (Ct+C0)^2/c^2
// A^2 t^2 / a^2 + 2AA0t / a^2 + A0^2 / a^2 + B^2 t^2 / b^2 + 2BB0t / b^2 + B0^2 / b^2 + C^2 t^2 / c^2 + 2CC0t / c^2 + C0^2 / c^2 - 1,0 = 0.0
// [A^2 / a^2 + B^2 / b^2 + C^2 / c^2] t^2 + [2AA0 / a^2 + 2BB0 / b^2 + 2CC0 / c^2] t + [A0^2 / a^2 + B0^2 / b^2 + C0^2 / c^2 - 1,0] = 0.0
// Use the quadratic formula to determine t values and candidate point(s)
final double A = lineVectorX * lineVectorX * planetModel.inverseAbSquared +
lineVectorY * lineVectorY * planetModel.inverseAbSquared +
lineVectorZ * lineVectorZ * planetModel.inverseCSquared;
final double B = 2.0 * (lineVectorX * x0 * planetModel.inverseAbSquared + lineVectorY * y0 * planetModel.inverseAbSquared + lineVectorZ * z0 * planetModel.inverseCSquared);
final double C = x0 * x0 * planetModel.inverseAbSquared + y0 * y0 * planetModel.inverseAbSquared + z0 * z0 * planetModel.inverseCSquared - 1.0;
final double BsquaredMinus = B * B - 4.0 * A * C;
if (Math.abs(BsquaredMinus) < MINIMUM_RESOLUTION_SQUARED) {
//System.err.println(" One point of intersection");
final double inverse2A = 1.0 / (2.0 * A);
// One solution only
final double t = -B * inverse2A;
// Maybe we can save ourselves the cost of construction of a point?
final double pointX = lineVectorX * t + x0;
final double pointY = lineVectorY * t + y0;
final double pointZ = lineVectorZ * t + z0;
for (final Membership bound : bounds) {
if (!bound.isWithin(pointX, pointY, pointZ)) {
return;
}
}
boundsInfo.addPoint(new GeoPoint(pointX, pointY, pointZ));
} else if (BsquaredMinus > 0.0) {
//System.err.println(" Two points of intersection");
final double inverse2A = 1.0 / (2.0 * A);
// Two solutions
final double sqrtTerm = Math.sqrt(BsquaredMinus);
final double t1 = (-B + sqrtTerm) * inverse2A;
final double t2 = (-B - sqrtTerm) * inverse2A;
// Up to two points being returned. Do what we can to save on object creation though.
final double point1X = lineVectorX * t1 + x0;
final double point1Y = lineVectorY * t1 + y0;
final double point1Z = lineVectorZ * t1 + z0;
final double point2X = lineVectorX * t2 + x0;
final double point2Y = lineVectorY * t2 + y0;
final double point2Z = lineVectorZ * t2 + z0;
boolean point1Valid = true;
boolean point2Valid = true;
for (final Membership bound : bounds) {
if (!bound.isWithin(point1X, point1Y, point1Z)) {
point1Valid = false;
break;
}
}
for (final Membership bound : bounds) {
if (!bound.isWithin(point2X, point2Y, point2Z)) {
point2Valid = false;
break;
}
}
if (point1Valid) {
boundsInfo.addPoint(new GeoPoint(point1X, point1Y, point1Z));
}
if (point2Valid) {
boundsInfo.addPoint(new GeoPoint(point2X, point2Y, point2Z));
}
} else {
// If we can't intersect line with world, then it's outside the world, so
// we have to assume everything is included.
boundsInfo.noBound(planetModel);
}
}
/*
protected void verifyPoint(final PlanetModel planetModel, final GeoPoint point, final Plane q) {
if (!evaluateIsZero(point))
throw new RuntimeException("Intersection point not on original plane; point="+point+", plane="+this);
if (!q.evaluateIsZero(point))
throw new RuntimeException("Intersection point not on intersected plane; point="+point+", plane="+q);
if (Math.abs(point.x * point.x * planetModel.inverseASquared + point.y * point.y * planetModel.inverseBSquared + point.z * point.z * planetModel.inverseCSquared - 1.0) >= MINIMUM_RESOLUTION)
throw new RuntimeException("Intersection point not on ellipsoid; point="+point);
}
*/
/**
* Accumulate (x,y,z) bounds information for this plane, intersected with another and the
* world.
* Updates min/max information using intersection points found. These include the error
* envelope for the planes (D +/- MINIMUM_RESOLUTION).
* @param planetModel is the planet model to use in determining bounds.
* @param boundsInfo is the xyz info to update with additional bounding information.
* @param p is the other plane.
* @param bounds are the surfaces delineating what's inside the shape.
*/
public void recordBounds(final PlanetModel planetModel, final XYZBounds boundsInfo, final Plane p, final Membership... bounds) {
findIntersectionBounds(planetModel, boundsInfo, p, bounds);
}
/**
* Accumulate (x,y,z) bounds information for this plane, intersected with the unit sphere.
* Updates min/max information, using max/min points found
* within the specified bounds.
*
* @param planetModel is the planet model to use in determining bounds.
* @param boundsInfo is the xyz info to update with additional bounding information.
* @param bounds are the surfaces delineating what's inside the shape.
*/
public void recordBounds(final PlanetModel planetModel, final XYZBounds boundsInfo, final Membership... bounds) {
// Basic plan is to do three intersections of the plane and the planet.
// For min/max x, we intersect a vertical plane such that y = 0.
// For min/max y, we intersect a vertical plane such that x = 0.
// For min/max z, we intersect a vertical plane that is chosen to go through the high point of the arc.
// For clarity, load local variables with good names
final double A = this.x;
final double B = this.y;
final double C = this.z;
// Do Z. This can be done simply because it is symmetrical.
if (!boundsInfo.isSmallestMinZ(planetModel) || !boundsInfo.isLargestMaxZ(planetModel)) {
//System.err.println(" computing Z bound");
// Compute Z bounds for this arc
// With ellipsoids, we really have only one viable way to do this computation.
// Specifically, we compute an appropriate vertical plane, based on the current plane's x-y orientation, and
// then intersect it with this one and with the ellipsoid. This gives us zero, one, or two points to use
// as bounds.
// There is one special case: horizontal circles. These require TWO vertical planes: one for the x, and one for
// the y, and we use all four resulting points in the bounds computation.
if ((Math.abs(A) >= MINIMUM_RESOLUTION || Math.abs(B) >= MINIMUM_RESOLUTION)) {
// NOT a degenerate case
//System.err.println(" not degenerate");
final Plane normalizedZPlane = constructNormalizedZPlane(A,B);
final GeoPoint[] points = findIntersections(planetModel, normalizedZPlane, bounds, NO_BOUNDS);
for (final GeoPoint point : points) {
assert planetModel.pointOnSurface(point);
//System.err.println(" Point = "+point+"; this.evaluate(point)="+this.evaluate(point)+"; normalizedZPlane.evaluate(point)="+normalizedZPlane.evaluate(point));
addPoint(boundsInfo, bounds, point);
}
} else {
// Since a==b==0, any plane including the Z axis suffices.
//System.err.println(" Perpendicular to z");
final GeoPoint[] points = findIntersections(planetModel, normalYPlane, NO_BOUNDS, NO_BOUNDS);
if (points.length > 0) {
boundsInfo.addZValue(points[0]);
}
}
}
// First, compute common subexpressions
final double k = 1.0 / ((x*x + y*y)*planetModel.ab*planetModel.ab + z*z*planetModel.c*planetModel.c);
final double abSquared = planetModel.ab * planetModel.ab;
final double cSquared = planetModel.c * planetModel.c;
final double ASquared = A * A;
final double BSquared = B * B;
final double CSquared = C * C;
final double r = 2.0*D*k;
final double rSquared = r * r;
if (!boundsInfo.isSmallestMinX(planetModel) || !boundsInfo.isLargestMaxX(planetModel)) {
// For min/max x, we need to use lagrange multipliers.
//
// For this, we need grad(F(x,y,z)) = (dF/dx, dF/dy, dF/dz).
//
// Minimize and maximize f(x,y,z) = x, with respect to g(x,y,z) = Ax + By + Cz - D and h(x,y,z) = x^2/ab^2 + y^2/ab^2 + z^2/c^2 - 1
//
// grad(f(x,y,z)) = (1,0,0)
// grad(g(x,y,z)) = (A,B,C)
// grad(h(x,y,z)) = (2x/ab^2,2y/ab^2,2z/c^2)
//
// Equations we need to simultaneously solve:
//
// grad(f(x,y,z)) = l * grad(g(x,y,z)) + m * grad(h(x,y,z))
// g(x,y,z) = 0
// h(x,y,z) = 0
//
// Equations:
// 1 = l*A + m*2x/ab^2
// 0 = l*B + m*2y/ab^2
// 0 = l*C + m*2z/c^2
// Ax + By + Cz + D = 0
// x^2/ab^2 + y^2/ab^2 + z^2/c^2 - 1 = 0
//
// Solve for x,y,z in terms of (l, m):
//
// x = ((1 - l*A) * ab^2 ) / (2 * m)
// y = (-l*B * ab^2) / ( 2 * m)
// z = (-l*C * c^2)/ (2 * m)
//
// Two equations, two unknowns:
//
// A * (((1 - l*A) * ab^2 ) / (2 * m)) + B * ((-l*B * ab^2) / ( 2 * m)) + C * ((-l*C * c^2)/ (2 * m)) + D = 0
//
// and
//
// (((1 - l*A) * ab^2 ) / (2 * m))^2/ab^2 + ((-l*B * ab^2) / ( 2 * m))^2/ab^2 + ((-l*C * c^2)/ (2 * m))^2/c^2 - 1 = 0
//
// Simple: solve for l and m, then find x from it.
//
// (a) Use first equation to find l in terms of m.
//
// A * (((1 - l*A) * ab^2 ) / (2 * m)) + B * ((-l*B * ab^2) / ( 2 * m)) + C * ((-l*C * c^2)/ (2 * m)) + D = 0
// A * ((1 - l*A) * ab^2 ) + B * (-l*B * ab^2) + C * (-l*C * c^2) + D * 2 * m = 0
// A * ab^2 - l*A^2* ab^2 - B^2 * l * ab^2 - C^2 * l * c^2 + D * 2 * m = 0
// - l *(A^2* ab^2 + B^2 * ab^2 + C^2 * c^2) + (A * ab^2 + D * 2 * m) = 0
// l = (A * ab^2 + D * 2 * m) / (A^2* ab^2 + B^2 * ab^2 + C^2 * c^2)
// l = A * ab^2 / (A^2* ab^2 + B^2 * ab^2 + C^2 * c^2) + m * 2 * D / (A^2* ab^2 + B^2 * ab^2 + C^2 * c^2)
//
// For convenience:
//
// k = 1.0 / (A^2* ab^2 + B^2 * ab^2 + C^2 * c^2)
//
// Then:
//
// l = A * ab^2 * k + m * 2 * D * k
// l = k * (A*ab^2 + m*2*D)
//
// For further convenience:
//
// q = A*ab^2*k
// r = 2*D*k
//
// l = (r*m + q)
// l^2 = (r^2 * m^2 + 2*r*m*q + q^2)
//
// (b) Simplify the second equation before substitution
//
// (((1 - l*A) * ab^2 ) / (2 * m))^2/ab^2 + ((-l*B * ab^2) / ( 2 * m))^2/ab^2 + ((-l*C * c^2)/ (2 * m))^2/c^2 - 1 = 0
// ((1 - l*A) * ab^2 )^2/ab^2 + (-l*B * ab^2)^2/ab^2 + (-l*C * c^2)^2/c^2 = 4 * m^2
// (1 - l*A)^2 * ab^2 + (-l*B)^2 * ab^2 + (-l*C)^2 * c^2 = 4 * m^2
// (1 - 2*l*A + l^2*A^2) * ab^2 + l^2*B^2 * ab^2 + l^2*C^2 * c^2 = 4 * m^2
// ab^2 - 2*A*ab^2*l + A^2*ab^2*l^2 + B^2*ab^2*l^2 + C^2*c^2*l^2 - 4*m^2 = 0
//
// (c) Substitute for l, l^2
//
// ab^2 - 2*A*ab^2*(r*m + q) + A^2*ab^2*(r^2 * m^2 + 2*r*m*q + q^2) + B^2*ab^2*(r^2 * m^2 + 2*r*m*q + q^2) + C^2*c^2*(r^2 * m^2 + 2*r*m*q + q^2) - 4*m^2 = 0
// ab^2 - 2*A*ab^2*r*m - 2*A*ab^2*q + A^2*ab^2*r^2*m^2 + 2*A^2*ab^2*r*q*m +
// A^2*ab^2*q^2 + B^2*ab^2*r^2*m^2 + 2*B^2*ab^2*r*q*m + B^2*ab^2*q^2 + C^2*c^2*r^2*m^2 + 2*C^2*c^2*r*q*m + C^2*c^2*q^2 - 4*m^2 = 0
//
// (d) Group
//
// m^2 * [A^2*ab^2*r^2 + B^2*ab^2*r^2 + C^2*c^2*r^2 - 4] +
// m * [- 2*A*ab^2*r + 2*A^2*ab^2*r*q + 2*B^2*ab^2*r*q + 2*C^2*c^2*r*q] +
// [ab^2 - 2*A*ab^2*q + A^2*ab^2*q^2 + B^2*ab^2*q^2 + C^2*c^2*q^2] = 0
// Useful subexpressions for this bound
final double q = A*abSquared*k;
final double qSquared = q * q;
// Quadratic equation
final double a = ASquared*abSquared*rSquared + BSquared*abSquared*rSquared + CSquared*cSquared*rSquared - 4.0;
final double b = - 2.0*A*abSquared*r + 2.0*ASquared*abSquared*r*q + 2.0*BSquared*abSquared*r*q + 2.0*CSquared*cSquared*r*q;
final double c = abSquared - 2.0*A*abSquared*q + ASquared*abSquared*qSquared + BSquared*abSquared*qSquared + CSquared*cSquared*qSquared;
if (Math.abs(a) >= MINIMUM_RESOLUTION_SQUARED) {
final double sqrtTerm = b*b - 4.0*a*c;
if (Math.abs(sqrtTerm) < MINIMUM_RESOLUTION_SQUARED) {
// One solution
final double m = -b / (2.0 * a);
// Valid?
if (Math.abs(m) >= MINIMUM_RESOLUTION) {
final double l = r * m + q;
// x = ((1 - l*A) * ab^2 ) / (2 * m)
// y = (-l*B * ab^2) / ( 2 * m)
// z = (-l*C * c^2)/ (2 * m)
final double denom0 = 0.5 / m;
final GeoPoint thePoint = new GeoPoint((1.0-l*A) * abSquared * denom0, -l*B * abSquared * denom0, -l*C * cSquared * denom0);
//Math is not quite accurate enough for this
//assert planetModel.pointOnSurface(thePoint): "Point: "+thePoint+"; Planetmodel="+planetModel+"; A="+A+" B="+B+" C="+C+" D="+D+" planetfcn="+
// (thePoint.x*thePoint.x*planetModel.inverseAb*planetModel.inverseAb + thePoint.y*thePoint.y*planetModel.inverseAb*planetModel.inverseAb + thePoint.z*thePoint.z*planetModel.inverseC*planetModel.inverseC);
//assert evaluateIsZero(thePoint): "Evaluation of point: "+evaluate(thePoint);
addPoint(boundsInfo, bounds, thePoint);
} else {
// This is a plane of the form A=n B=0 C=0. We can set a bound only by noting the D value.
boundsInfo.addXValue(-D/A);
}
} else if (sqrtTerm > 0.0) {
// Two solutions
final double sqrtResult = Math.sqrt(sqrtTerm);
final double commonDenom = 0.5/a;
final double m1 = (-b + sqrtResult) * commonDenom;
assert Math.abs(a * m1 * m1 + b * m1 + c) < MINIMUM_RESOLUTION;
final double m2 = (-b - sqrtResult) * commonDenom;
assert Math.abs(a * m2 * m2 + b * m2 + c) < MINIMUM_RESOLUTION;
if (Math.abs(m1) >= MINIMUM_RESOLUTION || Math.abs(m2) >= MINIMUM_RESOLUTION) {
final double l1 = r * m1 + q;
final double l2 = r * m2 + q;
// x = ((1 - l*A) * ab^2 ) / (2 * m)
// y = (-l*B * ab^2) / ( 2 * m)
// z = (-l*C * c^2)/ (2 * m)
final double denom1 = 0.5 / m1;
final double denom2 = 0.5 / m2;
final GeoPoint thePoint1 = new GeoPoint((1.0-l1*A) * abSquared * denom1, -l1*B * abSquared * denom1, -l1*C * cSquared * denom1);
final GeoPoint thePoint2 = new GeoPoint((1.0-l2*A) * abSquared * denom2, -l2*B * abSquared * denom2, -l2*C * cSquared * denom2);
//Math is not quite accurate enough for this
//assert planetModel.pointOnSurface(thePoint1): "Point1: "+thePoint1+"; Planetmodel="+planetModel+"; A="+A+" B="+B+" C="+C+" D="+D+" planetfcn="+
// (thePoint1.x*thePoint1.x*planetModel.inverseAb*planetModel.inverseAb + thePoint1.y*thePoint1.y*planetModel.inverseAb*planetModel.inverseAb + thePoint1.z*thePoint1.z*planetModel.inverseC*planetModel.inverseC);
//assert planetModel.pointOnSurface(thePoint2): "Point1: "+thePoint2+"; Planetmodel="+planetModel+"; A="+A+" B="+B+" C="+C+" D="+D+" planetfcn="+
// (thePoint2.x*thePoint2.x*planetModel.inverseAb*planetModel.inverseAb + thePoint2.y*thePoint2.y*planetModel.inverseAb*planetModel.inverseAb + thePoint2.z*thePoint2.z*planetModel.inverseC*planetModel.inverseC);
//assert evaluateIsZero(thePoint1): "Evaluation of point1: "+evaluate(thePoint1);
//assert evaluateIsZero(thePoint2): "Evaluation of point2: "+evaluate(thePoint2);
addPoint(boundsInfo, bounds, thePoint1);
addPoint(boundsInfo, bounds, thePoint2);
} else {
// This is a plane of the form A=n B=0 C=0. We can set a bound only by noting the D value.
boundsInfo.addXValue(-D/A);
}
} else {
// No solutions
}
} else if (Math.abs(b) > MINIMUM_RESOLUTION_SQUARED) {
// a = 0, so m = - c / b
final double m = -c / b;
final double l = r * m + q;
// x = ((1 - l*A) * ab^2 ) / (2 * m)
// y = (-l*B * ab^2) / ( 2 * m)
// z = (-l*C * c^2)/ (2 * m)
final double denom0 = 0.5 / m;
final GeoPoint thePoint = new GeoPoint((1.0-l*A) * abSquared * denom0, -l*B * abSquared * denom0, -l*C * cSquared * denom0);
//Math is not quite accurate enough for this
//assert planetModel.pointOnSurface(thePoint): "Point: "+thePoint+"; Planetmodel="+planetModel+"; A="+A+" B="+B+" C="+C+" D="+D+" planetfcn="+
// (thePoint.x*thePoint.x*planetModel.inverseAb*planetModel.inverseAb + thePoint.y*thePoint.y*planetModel.inverseAb*planetModel.inverseAb + thePoint.z*thePoint.z*planetModel.inverseC*planetModel.inverseC);
//assert evaluateIsZero(thePoint): "Evaluation of point: "+evaluate(thePoint);
addPoint(boundsInfo, bounds, thePoint);
} else {
// Something went very wrong; a = b = 0
}
}
// Do Y
if (!boundsInfo.isSmallestMinY(planetModel) || !boundsInfo.isLargestMaxY(planetModel)) {
// For min/max x, we need to use lagrange multipliers.
//
// For this, we need grad(F(x,y,z)) = (dF/dx, dF/dy, dF/dz).
//
// Minimize and maximize f(x,y,z) = y, with respect to g(x,y,z) = Ax + By + Cz - D and h(x,y,z) = x^2/ab^2 + y^2/ab^2 + z^2/c^2 - 1
//
// grad(f(x,y,z)) = (0,1,0)
// grad(g(x,y,z)) = (A,B,C)
// grad(h(x,y,z)) = (2x/ab^2,2y/ab^2,2z/c^2)
//
// Equations we need to simultaneously solve:
//
// grad(f(x,y,z)) = l * grad(g(x,y,z)) + m * grad(h(x,y,z))
// g(x,y,z) = 0
// h(x,y,z) = 0
//
// Equations:
// 0 = l*A + m*2x/ab^2
// 1 = l*B + m*2y/ab^2
// 0 = l*C + m*2z/c^2
// Ax + By + Cz + D = 0
// x^2/ab^2 + y^2/ab^2 + z^2/c^2 - 1 = 0
//
// Solve for x,y,z in terms of (l, m):
//
// x = (-l*A * ab^2 ) / (2 * m)
// y = ((1 - l*B) * ab^2) / ( 2 * m)
// z = (-l*C * c^2)/ (2 * m)
//
// Two equations, two unknowns:
//
// A * ((-l*A * ab^2 ) / (2 * m)) + B * (((1 - l*B) * ab^2) / ( 2 * m)) + C * ((-l*C * c^2)/ (2 * m)) + D = 0
//
// and
//
// ((-l*A * ab^2 ) / (2 * m))^2/ab^2 + (((1 - l*B) * ab^2) / ( 2 * m))^2/ab^2 + ((-l*C * c^2)/ (2 * m))^2/c^2 - 1 = 0
//
// Simple: solve for l and m, then find y from it.
//
// (a) Use first equation to find l in terms of m.
//
// A * ((-l*A * ab^2 ) / (2 * m)) + B * (((1 - l*B) * ab^2) / ( 2 * m)) + C * ((-l*C * c^2)/ (2 * m)) + D = 0
// A * (-l*A * ab^2 ) + B * ((1-l*B) * ab^2) + C * (-l*C * c^2) + D * 2 * m = 0
// -A^2*l*ab^2 + B*ab^2 - l*B^2*ab^2 - C^2*l*c^2 + D*2*m = 0
// - l *(A^2* ab^2 + B^2 * ab^2 + C^2 * c^2) + (B * ab^2 + D * 2 * m) = 0
// l = (B * ab^2 + D * 2 * m) / (A^2* ab^2 + B^2 * ab^2 + C^2 * c^2)
// l = B * ab^2 / (A^2* ab^2 + B^2 * ab^2 + C^2 * c^2) + m * 2 * D / (A^2* ab^2 + B^2 * ab^2 + C^2 * c^2)
//
// For convenience:
//
// k = 1.0 / (A^2* ab^2 + B^2 * ab^2 + C^2 * c^2)
//
// Then:
//
// l = B * ab^2 * k + m * 2 * D * k
// l = k * (B*ab^2 + m*2*D)
//
// For further convenience:
//
// q = B*ab^2*k
// r = 2*D*k
//
// l = (r*m + q)
// l^2 = (r^2 * m^2 + 2*r*m*q + q^2)
//
// (b) Simplify the second equation before substitution
//
// ((-l*A * ab^2 ) / (2 * m))^2/ab^2 + (((1 - l*B) * ab^2) / ( 2 * m))^2/ab^2 + ((-l*C * c^2)/ (2 * m))^2/c^2 - 1 = 0
// (-l*A * ab^2 )^2/ab^2 + ((1 - l*B) * ab^2)^2/ab^2 + (-l*C * c^2)^2/c^2 = 4 * m^2
// (-l*A)^2 * ab^2 + (1 - l*B)^2 * ab^2 + (-l*C)^2 * c^2 = 4 * m^2
// l^2*A^2 * ab^2 + (1 - 2*l*B + l^2*B^2) * ab^2 + l^2*C^2 * c^2 = 4 * m^2
// A^2*ab^2*l^2 + ab^2 - 2*B*ab^2*l + B^2*ab^2*l^2 + C^2*c^2*l^2 - 4*m^2 = 0
//
// (c) Substitute for l, l^2
//
// A^2*ab^2*(r^2 * m^2 + 2*r*m*q + q^2) + ab^2 - 2*B*ab^2*(r*m + q) + B^2*ab^2*(r^2 * m^2 + 2*r*m*q + q^2) + C^2*c^2*(r^2 * m^2 + 2*r*m*q + q^2) - 4*m^2 = 0
// A^2*ab^2*r^2*m^2 + 2*A^2*ab^2*r*q*m + A^2*ab^2*q^2 + ab^2 - 2*B*ab^2*r*m - 2*B*ab^2*q + B^2*ab^2*r^2*m^2 +
// 2*B^2*ab^2*r*q*m + B^2*ab^2*q^2 + C^2*c^2*r^2*m^2 + 2*C^2*c^2*r*q*m + C^2*c^2*q^2 - 4*m^2 = 0
//
// (d) Group
//
// m^2 * [A^2*ab^2*r^2 + B^2*ab^2*r^2 + C^2*c^2*r^2 - 4] +
// m * [2*A^2*ab^2*r*q - 2*B*ab^2*r + 2*B^2*ab^2*r*q + 2*C^2*c^2*r*q] +
// [A^2*ab^2*q^2 + ab^2 - 2*B*ab^2*q + B^2*ab^2*q^2 + C^2*c^2*q^2] = 0
//System.err.println(" computing Y bound");
// Useful subexpressions for this bound
final double q = B*abSquared*k;
final double qSquared = q * q;
// Quadratic equation
final double a = ASquared*abSquared*rSquared + BSquared*abSquared*rSquared + CSquared*cSquared*rSquared - 4.0;
final double b = 2.0*ASquared*abSquared*r*q - 2.0*B*abSquared*r + 2.0*BSquared*abSquared*r*q + 2.0*CSquared*cSquared*r*q;
final double c = ASquared*abSquared*qSquared + abSquared - 2.0*B*abSquared*q + BSquared*abSquared*qSquared + CSquared*cSquared*qSquared;
if (Math.abs(a) >= MINIMUM_RESOLUTION_SQUARED) {
final double sqrtTerm = b*b - 4.0*a*c;
if (Math.abs(sqrtTerm) < MINIMUM_RESOLUTION_SQUARED) {
// One solution
final double m = -b / (2.0 * a);
// Valid?
if (Math.abs(m) >= MINIMUM_RESOLUTION) {
final double l = r * m + q;
// x = (-l*A * ab^2 ) / (2 * m)
// y = ((1.0-l*B) * ab^2) / ( 2 * m)
// z = (-l*C * c^2)/ (2 * m)
final double denom0 = 0.5 / m;
final GeoPoint thePoint = new GeoPoint(-l*A * abSquared * denom0, (1.0-l*B) * abSquared * denom0, -l*C * cSquared * denom0);
//Math is not quite accurate enough for this
//assert planetModel.pointOnSurface(thePoint): "Point: "+thePoint+"; Planetmodel="+planetModel+"; A="+A+" B="+B+" C="+C+" D="+D+" planetfcn="+
// (thePoint1.x*thePoint.x*planetModel.inverseAb*planetModel.inverseAb + thePoint.y*thePoint.y*planetModel.inverseAb*planetModel.inverseAb + thePoint.z*thePoint.z*planetModel.inverseC*planetModel.inverseC);
//assert evaluateIsZero(thePoint): "Evaluation of point: "+evaluate(thePoint);
addPoint(boundsInfo, bounds, thePoint);
} else {
// This is a plane of the form A=0 B=n C=0. We can set a bound only by noting the D value.
boundsInfo.addYValue(-D/B);
}
} else if (sqrtTerm > 0.0) {
// Two solutions
final double sqrtResult = Math.sqrt(sqrtTerm);
final double commonDenom = 0.5/a;
final double m1 = (-b + sqrtResult) * commonDenom;
assert Math.abs(a * m1 * m1 + b * m1 + c) < MINIMUM_RESOLUTION;
final double m2 = (-b - sqrtResult) * commonDenom;
assert Math.abs(a * m2 * m2 + b * m2 + c) < MINIMUM_RESOLUTION;
if (Math.abs(m1) >= MINIMUM_RESOLUTION || Math.abs(m2) >= MINIMUM_RESOLUTION) {
final double l1 = r * m1 + q;
final double l2 = r * m2 + q;
// x = (-l*A * ab^2 ) / (2 * m)
// y = ((1.0-l*B) * ab^2) / ( 2 * m)
// z = (-l*C * c^2)/ (2 * m)
final double denom1 = 0.5 / m1;
final double denom2 = 0.5 / m2;
final GeoPoint thePoint1 = new GeoPoint(-l1*A * abSquared * denom1, (1.0-l1*B) * abSquared * denom1, -l1*C * cSquared * denom1);
final GeoPoint thePoint2 = new GeoPoint(-l2*A * abSquared * denom2, (1.0-l2*B) * abSquared * denom2, -l2*C * cSquared * denom2);
//Math is not quite accurate enough for this
//assert planetModel.pointOnSurface(thePoint1): "Point1: "+thePoint1+"; Planetmodel="+planetModel+"; A="+A+" B="+B+" C="+C+" D="+D+" planetfcn="+
// (thePoint1.x*thePoint1.x*planetModel.inverseAb*planetModel.inverseAb + thePoint1.y*thePoint1.y*planetModel.inverseAb*planetModel.inverseAb + thePoint1.z*thePoint1.z*planetModel.inverseC*planetModel.inverseC);
//assert planetModel.pointOnSurface(thePoint2): "Point2: "+thePoint2+"; Planetmodel="+planetModel+"; A="+A+" B="+B+" C="+C+" D="+D+" planetfcn="+
// (thePoint2.x*thePoint2.x*planetModel.inverseAb*planetModel.inverseAb + thePoint2.y*thePoint2.y*planetModel.inverseAb*planetModel.inverseAb + thePoint2.z*thePoint2.z*planetModel.inverseC*planetModel.inverseC);
//assert evaluateIsZero(thePoint1): "Evaluation of point1: "+evaluate(thePoint1);
//assert evaluateIsZero(thePoint2): "Evaluation of point2: "+evaluate(thePoint2);
addPoint(boundsInfo, bounds, thePoint1);
addPoint(boundsInfo, bounds, thePoint2);
} else {
// This is a plane of the form A=0 B=n C=0. We can set a bound only by noting the D value.
boundsInfo.addYValue(-D/B);
}
} else {
// No solutions
}
} else if (Math.abs(b) > MINIMUM_RESOLUTION_SQUARED) {
// a = 0, so m = - c / b
final double m = -c / b;
final double l = r * m + q;
// x = ( -l*A * ab^2 ) / (2 * m)
// y = ((1-l*B) * ab^2) / ( 2 * m)
// z = (-l*C * c^2)/ (2 * m)
final double denom0 = 0.5 / m;
final GeoPoint thePoint = new GeoPoint(-l*A * abSquared * denom0, (1.0-l*B) * abSquared * denom0, -l*C * cSquared * denom0);
//Math is not quite accurate enough for this
//assert planetModel.pointOnSurface(thePoint): "Point: "+thePoint+"; Planetmodel="+planetModel+"; A="+A+" B="+B+" C="+C+" D="+D+" planetfcn="+
// (thePoint.x*thePoint.x*planetModel.inverseAb*planetModel.inverseAb + thePoint.y*thePoint.y*planetModel.inverseAb*planetModel.inverseAb + thePoint.z*thePoint.z*planetModel.inverseC*planetModel.inverseC);
//assert evaluateIsZero(thePoint): "Evaluation of point: "+evaluate(thePoint);
addPoint(boundsInfo, bounds, thePoint);
} else {
// Something went very wrong; a = b = 0
}
}
}
/**
* Accumulate bounds information for this plane, intersected with another plane
* and the world.
* Updates both latitude and longitude information, using max/min points found
* within the specified bounds. Also takes into account the error envelope for all
* planes being intersected.
*
* @param planetModel is the planet model to use in determining bounds.
* @param boundsInfo is the lat/lon info to update with additional bounding information.
* @param p is the other plane.
* @param bounds are the surfaces delineating what's inside the shape.
*/
public void recordBounds(final PlanetModel planetModel, final LatLonBounds boundsInfo, final Plane p, final Membership... bounds) {
findIntersectionBounds(planetModel, boundsInfo, p, bounds);
}
/**
* Accumulate bounds information for this plane, intersected with the unit sphere.
* Updates both latitude and longitude information, using max/min points found
* within the specified bounds.
*
* @param planetModel is the planet model to use in determining bounds.
* @param boundsInfo is the lat/lon info to update with additional bounding information.
* @param bounds are the surfaces delineating what's inside the shape.
*/
public void recordBounds(final PlanetModel planetModel, final LatLonBounds boundsInfo, final Membership... bounds) {
// For clarity, load local variables with good names
final double A = this.x;
final double B = this.y;
final double C = this.z;
// Now compute latitude min/max points
if (!boundsInfo.checkNoTopLatitudeBound() || !boundsInfo.checkNoBottomLatitudeBound()) {
//System.err.println("Looking at latitude for plane "+this);
// With ellipsoids, we really have only one viable way to do this computation.
// Specifically, we compute an appropriate vertical plane, based on the current plane's x-y orientation, and
// then intersect it with this one and with the ellipsoid. This gives us zero, one, or two points to use
// as bounds.
// There is one special case: horizontal circles. These require TWO vertical planes: one for the x, and one for
// the y, and we use all four resulting points in the bounds computation.
if ((Math.abs(A) >= MINIMUM_RESOLUTION || Math.abs(B) >= MINIMUM_RESOLUTION)) {
// NOT a horizontal circle!
//System.err.println(" Not a horizontal circle");
final Plane verticalPlane = constructNormalizedZPlane(A,B);
final GeoPoint[] points = findIntersections(planetModel, verticalPlane, bounds, NO_BOUNDS);
for (final GeoPoint point : points) {
addPoint(boundsInfo, bounds, point);
}
} else {
// Horizontal circle. Since a==b, any vertical plane suffices.
final GeoPoint[] points = findIntersections(planetModel, normalXPlane, NO_BOUNDS, NO_BOUNDS);
boundsInfo.addZValue(points[0]);
}
//System.err.println("Done latitude bounds");
}
// First, figure out our longitude bounds, unless we no longer need to consider that
if (!boundsInfo.checkNoLongitudeBound()) {
//System.err.println("Computing longitude bounds for "+this);
//System.out.println("A = "+A+" B = "+B+" C = "+C+" D = "+D);
// Compute longitude bounds
double a;
double b;
double c;
if (Math.abs(C) < MINIMUM_RESOLUTION) {
// Degenerate; the equation describes a line
//System.out.println("It's a zero-width ellipse");
// Ax + By + D = 0
if (Math.abs(D) >= MINIMUM_RESOLUTION) {
if (Math.abs(A) > Math.abs(B)) {
// Use equation suitable for A != 0
// We need to find the endpoints of the zero-width ellipse.
// Geometrically, we have a line segment in x-y space. We need to locate the endpoints
// of that line. But luckily, we know some things: specifically, since it is a
// degenerate situation in projection, the C value had to have been 0. That
// means that our line's endpoints will coincide with the projected ellipse. All we
// need to do then is to find the intersection of the projected ellipse and the line
// equation:
//
// A x + B y + D = 0
//
// Since A != 0:
// x = (-By - D)/A
//
// The projected ellipse:
// x^2/a^2 + y^2/b^2 - 1 = 0
// Substitute:
// [(-By-D)/A]^2/a^2 + y^2/b^2 -1 = 0
// Multiply through by A^2:
// [-By - D]^2/a^2 + A^2*y^2/b^2 - A^2 = 0
// Multiply out:
// B^2*y^2/a^2 + 2BDy/a^2 + D^2/a^2 + A^2*y^2/b^2 - A^2 = 0
// Group:
// y^2 * [B^2/a^2 + A^2/b^2] + y [2BD/a^2] + [D^2/a^2-A^2] = 0
a = B * B * planetModel.inverseAbSquared + A * A * planetModel.inverseAbSquared;
b = 2.0 * B * D * planetModel.inverseAbSquared;
c = D * D * planetModel.inverseAbSquared - A * A;
double sqrtClause = b * b - 4.0 * a * c;
if (Math.abs(sqrtClause) < MINIMUM_RESOLUTION_SQUARED) {
double y0 = -b / (2.0 * a);
double x0 = (-D - B * y0) / A;
double z0 = 0.0;
addPoint(boundsInfo, bounds, new GeoPoint(x0, y0, z0));
} else if (sqrtClause > 0.0) {
double sqrtResult = Math.sqrt(sqrtClause);
double denom = 1.0 / (2.0 * a);
double Hdenom = 1.0 / A;
double y0a = (-b + sqrtResult) * denom;
double y0b = (-b - sqrtResult) * denom;
double x0a = (-D - B * y0a) * Hdenom;
double x0b = (-D - B * y0b) * Hdenom;
double z0a = 0.0;
double z0b = 0.0;
addPoint(boundsInfo, bounds, new GeoPoint(x0a, y0a, z0a));
addPoint(boundsInfo, bounds, new GeoPoint(x0b, y0b, z0b));
}
} else {
// Use equation suitable for B != 0
// Since I != 0, we rewrite:
// y = (-Ax - D)/B
a = B * B * planetModel.inverseAbSquared + A * A * planetModel.inverseAbSquared;
b = 2.0 * A * D * planetModel.inverseAbSquared;
c = D * D * planetModel.inverseAbSquared - B * B;
double sqrtClause = b * b - 4.0 * a * c;
if (Math.abs(sqrtClause) < MINIMUM_RESOLUTION_SQUARED) {
double x0 = -b / (2.0 * a);
double y0 = (-D - A * x0) / B;
double z0 = 0.0;
addPoint(boundsInfo, bounds, new GeoPoint(x0, y0, z0));
} else if (sqrtClause > 0.0) {
double sqrtResult = Math.sqrt(sqrtClause);
double denom = 1.0 / (2.0 * a);
double Idenom = 1.0 / B;
double x0a = (-b + sqrtResult) * denom;
double x0b = (-b - sqrtResult) * denom;
double y0a = (-D - A * x0a) * Idenom;
double y0b = (-D - A * x0b) * Idenom;
double z0a = 0.0;
double z0b = 0.0;
addPoint(boundsInfo, bounds, new GeoPoint(x0a, y0a, z0a));
addPoint(boundsInfo, bounds, new GeoPoint(x0b, y0b, z0b));
}
}
}
} else {
//System.err.println("General longitude bounds...");
// NOTE WELL: The x,y,z values generated here are NOT on the unit sphere.
// They are for lat/lon calculation purposes only. x-y is meant to be used for longitude determination,
// and z for latitude, and that's all the values are good for.
// (1) Intersect the plane and the ellipsoid, and project the results into the x-y plane:
// From plane:
// z = (-Ax - By - D) / C
// From ellipsoid:
// x^2/a^2 + y^2/b^2 + [(-Ax - By - D) / C]^2/c^2 = 1
// Simplify/expand:
// C^2*x^2/a^2 + C^2*y^2/b^2 + (-Ax - By - D)^2/c^2 = C^2
//
// x^2 * C^2/a^2 + y^2 * C^2/b^2 + x^2 * A^2/c^2 + ABxy/c^2 + ADx/c^2 + ABxy/c^2 + y^2 * B^2/c^2 + BDy/c^2 + ADx/c^2 + BDy/c^2 + D^2/c^2 = C^2
// Group:
// [A^2/c^2 + C^2/a^2] x^2 + [B^2/c^2 + C^2/b^2] y^2 + [2AB/c^2]xy + [2AD/c^2]x + [2BD/c^2]y + [D^2/c^2-C^2] = 0
// For convenience, introduce post-projection coefficient variables to make life easier.
// E x^2 + F y^2 + G xy + H x + I y + J = 0
double E = A * A * planetModel.inverseCSquared + C * C * planetModel.inverseAbSquared;
double F = B * B * planetModel.inverseCSquared + C * C * planetModel.inverseAbSquared;
double G = 2.0 * A * B * planetModel.inverseCSquared;
double H = 2.0 * A * D * planetModel.inverseCSquared;
double I = 2.0 * B * D * planetModel.inverseCSquared;
double J = D * D * planetModel.inverseCSquared - C * C;
//System.err.println("E = " + E + " F = " + F + " G = " + G + " H = "+ H + " I = " + I + " J = " + J);
// Check if the origin is within, by substituting x = 0, y = 0 and seeing if less than zero
if (Math.abs(J) >= MINIMUM_RESOLUTION && J > 0.0) {
// The derivative of the curve above is:
// 2Exdx + 2Fydy + G(xdy+ydx) + Hdx + Idy = 0
// (2Ex + Gy + H)dx + (2Fy + Gx + I)dy = 0
// dy/dx = - (2Ex + Gy + H) / (2Fy + Gx + I)
//
// The equation of a line going through the origin with the slope dy/dx is:
// y = dy/dx x
// y = - (2Ex + Gy + H) / (2Fy + Gx + I) x
// Rearrange:
// (2Fy + Gx + I) y + (2Ex + Gy + H) x = 0
// 2Fy^2 + Gxy + Iy + 2Ex^2 + Gxy + Hx = 0
// 2Ex^2 + 2Fy^2 + 2Gxy + Hx + Iy = 0
//
// Multiply the original equation by 2:
// 2E x^2 + 2F y^2 + 2G xy + 2H x + 2I y + 2J = 0
// Subtract one from the other, to remove the high-order terms:
// Hx + Iy + 2J = 0
// Now, we can substitute either x = or y = into the derivative equation, or into the original equation.
// But we will need to base this on which coefficient is non-zero
if (Math.abs(H) > Math.abs(I)) {
//System.err.println(" Using the y quadratic");
// x = (-2J - Iy)/H
// Plug into the original equation:
// E [(-2J - Iy)/H]^2 + F y^2 + G [(-2J - Iy)/H]y + H [(-2J - Iy)/H] + I y + J = 0
// E [(-2J - Iy)/H]^2 + F y^2 + G [(-2J - Iy)/H]y - J = 0
// Same equation as derivative equation, except for a factor of 2! So it doesn't matter which we pick.
// Plug into derivative equation:
// 2E[(-2J - Iy)/H]^2 + 2Fy^2 + 2G[(-2J - Iy)/H]y + H[(-2J - Iy)/H] + Iy = 0
// 2E[(-2J - Iy)/H]^2 + 2Fy^2 + 2G[(-2J - Iy)/H]y - 2J = 0
// E[(-2J - Iy)/H]^2 + Fy^2 + G[(-2J - Iy)/H]y - J = 0
// Multiply by H^2 to make manipulation easier
// E[(-2J - Iy)]^2 + F*H^2*y^2 + GH[(-2J - Iy)]y - J*H^2 = 0
// Do the square
// E[4J^2 + 4IJy + I^2*y^2] + F*H^2*y^2 + GH(-2Jy - I*y^2) - J*H^2 = 0
// Multiply it out
// 4E*J^2 + 4EIJy + E*I^2*y^2 + H^2*Fy^2 - 2GHJy - GH*I*y^2 - J*H^2 = 0
// Group:
// y^2 [E*I^2 - GH*I + F*H^2] + y [4EIJ - 2GHJ] + [4E*J^2 - J*H^2] = 0
a = E * I * I - G * H * I + F * H * H;
b = 4.0 * E * I * J - 2.0 * G * H * J;
c = 4.0 * E * J * J - J * H * H;
//System.out.println("a="+a+" b="+b+" c="+c);
double sqrtClause = b * b - 4.0 * a * c;
//System.out.println("sqrtClause="+sqrtClause);
if (Math.abs(sqrtClause) < MINIMUM_RESOLUTION_CUBED) {
//System.err.println(" One solution");
double y0 = -b / (2.0 * a);
double x0 = (-2.0 * J - I * y0) / H;
double z0 = (-A * x0 - B * y0 - D) / C;
addPoint(boundsInfo, bounds, new GeoPoint(x0, y0, z0));
} else if (sqrtClause > 0.0) {
//System.err.println(" Two solutions");
double sqrtResult = Math.sqrt(sqrtClause);
double denom = 1.0 / (2.0 * a);
double Hdenom = 1.0 / H;
double Cdenom = 1.0 / C;
double y0a = (-b + sqrtResult) * denom;
double y0b = (-b - sqrtResult) * denom;
double x0a = (-2.0 * J - I * y0a) * Hdenom;
double x0b = (-2.0 * J - I * y0b) * Hdenom;
double z0a = (-A * x0a - B * y0a - D) * Cdenom;
double z0b = (-A * x0b - B * y0b - D) * Cdenom;
addPoint(boundsInfo, bounds, new GeoPoint(x0a, y0a, z0a));
addPoint(boundsInfo, bounds, new GeoPoint(x0b, y0b, z0b));
}
} else {
//System.err.println(" Using the x quadratic");
// y = (-2J - Hx)/I
// Plug into the original equation:
// E x^2 + F [(-2J - Hx)/I]^2 + G x[(-2J - Hx)/I] - J = 0
// Multiply by I^2 to make manipulation easier
// E * I^2 * x^2 + F [(-2J - Hx)]^2 + GIx[(-2J - Hx)] - J * I^2 = 0
// Do the square
// E * I^2 * x^2 + F [ 4J^2 + 4JHx + H^2*x^2] + GI[(-2Jx - H*x^2)] - J * I^2 = 0
// Multiply it out
// E * I^2 * x^2 + 4FJ^2 + 4FJHx + F*H^2*x^2 - 2GIJx - HGI*x^2 - J * I^2 = 0
// Group:
// x^2 [E*I^2 - GHI + F*H^2] + x [4FJH - 2GIJ] + [4FJ^2 - J*I^2] = 0
// E x^2 + F y^2 + G xy + H x + I y + J = 0
a = E * I * I - G * H * I + F * H * H;
b = 4.0 * F * H * J - 2.0 * G * I * J;
c = 4.0 * F * J * J - J * I * I;
//System.out.println("a="+a+" b="+b+" c="+c);
double sqrtClause = b * b - 4.0 * a * c;
//System.out.println("sqrtClause="+sqrtClause);
if (Math.abs(sqrtClause) < MINIMUM_RESOLUTION_CUBED) {
//System.err.println(" One solution; sqrt clause was "+sqrtClause);
double x0 = -b / (2.0 * a);
double y0 = (-2.0 * J - H * x0) / I;
double z0 = (-A * x0 - B * y0 - D) / C;
// Verify that x&y fulfill the equation
// 2Ex^2 + 2Fy^2 + 2Gxy + Hx + Iy = 0
addPoint(boundsInfo, bounds, new GeoPoint(x0, y0, z0));
} else if (sqrtClause > 0.0) {
//System.err.println(" Two solutions");
double sqrtResult = Math.sqrt(sqrtClause);
double denom = 1.0 / (2.0 * a);
double Idenom = 1.0 / I;
double Cdenom = 1.0 / C;
double x0a = (-b + sqrtResult) * denom;
double x0b = (-b - sqrtResult) * denom;
double y0a = (-2.0 * J - H * x0a) * Idenom;
double y0b = (-2.0 * J - H * x0b) * Idenom;
double z0a = (-A * x0a - B * y0a - D) * Cdenom;
double z0b = (-A * x0b - B * y0b - D) * Cdenom;
addPoint(boundsInfo, bounds, new GeoPoint(x0a, y0a, z0a));
addPoint(boundsInfo, bounds, new GeoPoint(x0b, y0b, z0b));
}
}
}
}
}
}
/** Add a point to boundsInfo if within a specifically bounded area.
* @param boundsInfo is the object to be modified.
* @param bounds is the area that the point must be within.
* @param point is the point.
*/
private static void addPoint(final Bounds boundsInfo, final Membership[] bounds, final GeoPoint point) {
// Make sure the discovered point is within the bounds
for (Membership bound : bounds) {
if (!bound.isWithin(point))
return;
}
// Add the point
boundsInfo.addPoint(point);
}
/**
* Determine whether the plane intersects another plane within the
* bounds provided.
*
* @param planetModel is the planet model to use in determining intersection.
* @param q is the other plane.
* @param notablePoints are points to look at to disambiguate cases when the two planes are identical.
* @param moreNotablePoints are additional points to look at to disambiguate cases when the two planes are identical.
* @param bounds is one part of the bounds.
* @param moreBounds are more bounds.
* @return true if there's an intersection.
*/
public boolean intersects(final PlanetModel planetModel, final Plane q, final GeoPoint[] notablePoints, final GeoPoint[] moreNotablePoints, final Membership[] bounds, final Membership... moreBounds) {
//System.err.println("Does plane "+this+" intersect with plane "+q);
// If the two planes are identical, then the math will find no points of intersection.
// So a special case of this is to check for plane equality. But that is not enough, because
// what we really need at that point is to determine whether overlap occurs between the two parts of the intersection
// of plane and circle. That is, are there *any* points on the plane that are within the bounds described?
if (isNumericallyIdentical(q)) {
//System.err.println(" Identical plane");
// The only way to efficiently figure this out will be to have a list of trial points available to evaluate.
// We look for any point that fulfills all the bounds.
for (GeoPoint p : notablePoints) {
if (meetsAllBounds(p, bounds, moreBounds)) {
//System.err.println(" found a notable point in bounds, so intersects");
return true;
}
}
for (GeoPoint p : moreNotablePoints) {
if (meetsAllBounds(p, bounds, moreBounds)) {
//System.err.println(" found a notable point in bounds, so intersects");
return true;
}
}
//System.err.println(" no notable points inside found; no intersection");
return false;
}
// Save on allocations; do inline instead of calling findIntersections
//System.err.println("Looking for intersection between plane "+this+" and plane "+q+" within bounds");
// Unnormalized, unchecked...
final double lineVectorX = y * q.z - z * q.y;
final double lineVectorY = z * q.x - x * q.z;
final double lineVectorZ = x * q.y - y * q.x;
if (Math.abs(lineVectorX) < MINIMUM_RESOLUTION && Math.abs(lineVectorY) < MINIMUM_RESOLUTION && Math.abs(lineVectorZ) < MINIMUM_RESOLUTION) {
// Degenerate case: parallel planes
//System.err.println(" planes are parallel - no intersection");
return false;
}
// The line will have the equation: A t + A0 = x, B t + B0 = y, C t + C0 = z.
// We have A, B, and C. In order to come up with A0, B0, and C0, we need to find a point that is on both planes.
// To do this, we find the largest vector value (either x, y, or z), and look for a point that solves both plane equations
// simultaneous. For example, let's say that the vector is (0.5,0.5,1), and the two plane equations are:
// 0.7 x + 0.3 y + 0.1 z + 0.0 = 0
// and
// 0.9 x - 0.1 y + 0.2 z + 4.0 = 0
// Then we'd pick z = 0, so the equations to solve for x and y would be:
// 0.7 x + 0.3y = 0.0
// 0.9 x - 0.1y = -4.0
// ... which can readily be solved using standard linear algebra. Generally:
// Q0 x + R0 y = S0
// Q1 x + R1 y = S1
// ... can be solved by Cramer's rule:
// x = det(S0 R0 / S1 R1) / det(Q0 R0 / Q1 R1)
// y = det(Q0 S0 / Q1 S1) / det(Q0 R0 / Q1 R1)
// ... where det( a b / c d ) = ad - bc, so:
// x = (S0 * R1 - R0 * S1) / (Q0 * R1 - R0 * Q1)
// y = (Q0 * S1 - S0 * Q1) / (Q0 * R1 - R0 * Q1)
double x0;
double y0;
double z0;
// We try to maximize the determinant in the denominator
final double denomYZ = this.y * q.z - this.z * q.y;
final double denomXZ = this.x * q.z - this.z * q.x;
final double denomXY = this.x * q.y - this.y * q.x;
if (Math.abs(denomYZ) >= Math.abs(denomXZ) && Math.abs(denomYZ) >= Math.abs(denomXY)) {
// X is the biggest, so our point will have x0 = 0.0
if (Math.abs(denomYZ) < MINIMUM_RESOLUTION_SQUARED) {
//System.err.println(" Denominator is zero: no intersection");
return false;
}
final double denom = 1.0 / denomYZ;
x0 = 0.0;
y0 = (-this.D * q.z - this.z * -q.D) * denom;
z0 = (this.y * -q.D + this.D * q.y) * denom;
} else if (Math.abs(denomXZ) >= Math.abs(denomXY) && Math.abs(denomXZ) >= Math.abs(denomYZ)) {
// Y is the biggest, so y0 = 0.0
if (Math.abs(denomXZ) < MINIMUM_RESOLUTION_SQUARED) {
//System.err.println(" Denominator is zero: no intersection");
return false;
}
final double denom = 1.0 / denomXZ;
x0 = (-this.D * q.z - this.z * -q.D) * denom;
y0 = 0.0;
z0 = (this.x * -q.D + this.D * q.x) * denom;
} else {
// Z is the biggest, so Z0 = 0.0
if (Math.abs(denomXY) < MINIMUM_RESOLUTION_SQUARED) {
//System.err.println(" Denominator is zero: no intersection");
return false;
}
final double denom = 1.0 / denomXY;
x0 = (-this.D * q.y - this.y * -q.D) * denom;
y0 = (this.x * -q.D + this.D * q.x) * denom;
z0 = 0.0;
}
// Once an intersecting line is determined, the next step is to intersect that line with the ellipsoid, which
// will yield zero, one, or two points.
// The ellipsoid equation: 1,0 = x^2/a^2 + y^2/b^2 + z^2/c^2
// 1.0 = (At+A0)^2/a^2 + (Bt+B0)^2/b^2 + (Ct+C0)^2/c^2
// A^2 t^2 / a^2 + 2AA0t / a^2 + A0^2 / a^2 + B^2 t^2 / b^2 + 2BB0t / b^2 + B0^2 / b^2 + C^2 t^2 / c^2 + 2CC0t / c^2 + C0^2 / c^2 - 1,0 = 0.0
// [A^2 / a^2 + B^2 / b^2 + C^2 / c^2] t^2 + [2AA0 / a^2 + 2BB0 / b^2 + 2CC0 / c^2] t + [A0^2 / a^2 + B0^2 / b^2 + C0^2 / c^2 - 1,0] = 0.0
// Use the quadratic formula to determine t values and candidate point(s)
final double A = lineVectorX * lineVectorX * planetModel.inverseAbSquared +
lineVectorY * lineVectorY * planetModel.inverseAbSquared +
lineVectorZ * lineVectorZ * planetModel.inverseCSquared;
final double B = 2.0 * (lineVectorX * x0 * planetModel.inverseAbSquared + lineVectorY * y0 * planetModel.inverseAbSquared + lineVectorZ * z0 * planetModel.inverseCSquared);
final double C = x0 * x0 * planetModel.inverseAbSquared + y0 * y0 * planetModel.inverseAbSquared + z0 * z0 * planetModel.inverseCSquared - 1.0;
final double BsquaredMinus = B * B - 4.0 * A * C;
if (Math.abs(BsquaredMinus) < MINIMUM_RESOLUTION_SQUARED) {
//System.err.println(" One point of intersection");
final double inverse2A = 1.0 / (2.0 * A);
// One solution only
final double t = -B * inverse2A;
// Maybe we can save ourselves the cost of construction of a point?
final double pointX = lineVectorX * t + x0;
final double pointY = lineVectorY * t + y0;
final double pointZ = lineVectorZ * t + z0;
for (final Membership bound : bounds) {
if (!bound.isWithin(pointX, pointY, pointZ)) {
return false;
}
}
for (final Membership bound : moreBounds) {
if (!bound.isWithin(pointX, pointY, pointZ)) {
return false;
}
}
return true;
} else if (BsquaredMinus > 0.0) {
//System.err.println(" Two points of intersection");
final double inverse2A = 1.0 / (2.0 * A);
// Two solutions
final double sqrtTerm = Math.sqrt(BsquaredMinus);
final double t1 = (-B + sqrtTerm) * inverse2A;
final double t2 = (-B - sqrtTerm) * inverse2A;
// Up to two points being returned. Do what we can to save on object creation though.
final double point1X = lineVectorX * t1 + x0;
final double point1Y = lineVectorY * t1 + y0;
final double point1Z = lineVectorZ * t1 + z0;
boolean point1Valid = true;
for (final Membership bound : bounds) {
if (!bound.isWithin(point1X, point1Y, point1Z)) {
point1Valid = false;
break;
}
}
if (point1Valid) {
for (final Membership bound : moreBounds) {
if (!bound.isWithin(point1X, point1Y, point1Z)) {
point1Valid = false;
break;
}
}
}
if (point1Valid) {
return true;
}
final double point2X = lineVectorX * t2 + x0;
final double point2Y = lineVectorY * t2 + y0;
final double point2Z = lineVectorZ * t2 + z0;
for (final Membership bound : bounds) {
if (!bound.isWithin(point2X, point2Y, point2Z)) {
return false;
}
}
for (final Membership bound : moreBounds) {
if (!bound.isWithin(point2X, point2Y, point2Z)) {
return false;
}
}
return true;
} else {
//System.err.println(" no solutions - no intersection");
return false;
}
}
/**
* Determine whether the plane crosses another plane within the
* bounds provided. Crossing is defined as intersecting with the geo surface at two points.
*
* @param planetModel is the planet model to use in determining intersection.
* @param q is the other plane.
* @param notablePoints are points to look at to disambiguate cases when the two planes are identical.
* @param moreNotablePoints are additional points to look at to disambiguate cases when the two planes are identical.
* @param bounds is one part of the bounds.
* @param moreBounds are more bounds.
* @return true if there's a crossing.
*/
public boolean crosses(final PlanetModel planetModel, final Plane q, final GeoPoint[] notablePoints, final GeoPoint[] moreNotablePoints, final Membership[] bounds, final Membership... moreBounds) {
//System.err.println("Does plane "+this+" cross plane "+q);
// If the two planes are identical, then the math will find no points of intersection.
// So a special case of this is to check for plane equality. But that is not enough, because
// what we really need at that point is to determine whether overlap occurs between the two parts of the intersection
// of plane and circle. That is, are there *any* points on the plane that are within the bounds described?
if (isNumericallyIdentical(q)) {
//System.err.println(" Identical plane");
// The only way to efficiently figure this out will be to have a list of trial points available to evaluate.
// We look for any point that fulfills all the bounds.
for (GeoPoint p : notablePoints) {
if (meetsAllBounds(p, bounds, moreBounds)) {
//System.err.println(" found a notable point in bounds, so intersects");
return true;
}
}
for (GeoPoint p : moreNotablePoints) {
if (meetsAllBounds(p, bounds, moreBounds)) {
//System.err.println(" found a notable point in bounds, so intersects");
return true;
}
}
//System.err.println(" no notable points inside found; no intersection");
return false;
}
// Save on allocations; do inline instead of calling findIntersections
//System.err.println("Looking for intersection between plane "+this+" and plane "+q+" within bounds");
// Unnormalized, unchecked...
final double lineVectorX = y * q.z - z * q.y;
final double lineVectorY = z * q.x - x * q.z;
final double lineVectorZ = x * q.y - y * q.x;
if (Math.abs(lineVectorX) < MINIMUM_RESOLUTION && Math.abs(lineVectorY) < MINIMUM_RESOLUTION && Math.abs(lineVectorZ) < MINIMUM_RESOLUTION) {
// Degenerate case: parallel planes
//System.err.println(" planes are parallel - no intersection");
return false;
}
// The line will have the equation: A t + A0 = x, B t + B0 = y, C t + C0 = z.
// We have A, B, and C. In order to come up with A0, B0, and C0, we need to find a point that is on both planes.
// To do this, we find the largest vector value (either x, y, or z), and look for a point that solves both plane equations
// simultaneous. For example, let's say that the vector is (0.5,0.5,1), and the two plane equations are:
// 0.7 x + 0.3 y + 0.1 z + 0.0 = 0
// and
// 0.9 x - 0.1 y + 0.2 z + 4.0 = 0
// Then we'd pick z = 0, so the equations to solve for x and y would be:
// 0.7 x + 0.3y = 0.0
// 0.9 x - 0.1y = -4.0
// ... which can readily be solved using standard linear algebra. Generally:
// Q0 x + R0 y = S0
// Q1 x + R1 y = S1
// ... can be solved by Cramer's rule:
// x = det(S0 R0 / S1 R1) / det(Q0 R0 / Q1 R1)
// y = det(Q0 S0 / Q1 S1) / det(Q0 R0 / Q1 R1)
// ... where det( a b / c d ) = ad - bc, so:
// x = (S0 * R1 - R0 * S1) / (Q0 * R1 - R0 * Q1)
// y = (Q0 * S1 - S0 * Q1) / (Q0 * R1 - R0 * Q1)
double x0;
double y0;
double z0;
// We try to maximize the determinant in the denominator
final double denomYZ = this.y * q.z - this.z * q.y;
final double denomXZ = this.x * q.z - this.z * q.x;
final double denomXY = this.x * q.y - this.y * q.x;
if (Math.abs(denomYZ) >= Math.abs(denomXZ) && Math.abs(denomYZ) >= Math.abs(denomXY)) {
// X is the biggest, so our point will have x0 = 0.0
if (Math.abs(denomYZ) < MINIMUM_RESOLUTION_SQUARED) {
//System.err.println(" Denominator is zero: no intersection");
return false;
}
final double denom = 1.0 / denomYZ;
x0 = 0.0;
y0 = (-this.D * q.z - this.z * -q.D) * denom;
z0 = (this.y * -q.D + this.D * q.y) * denom;
} else if (Math.abs(denomXZ) >= Math.abs(denomXY) && Math.abs(denomXZ) >= Math.abs(denomYZ)) {
// Y is the biggest, so y0 = 0.0
if (Math.abs(denomXZ) < MINIMUM_RESOLUTION_SQUARED) {
//System.err.println(" Denominator is zero: no intersection");
return false;
}
final double denom = 1.0 / denomXZ;
x0 = (-this.D * q.z - this.z * -q.D) * denom;
y0 = 0.0;
z0 = (this.x * -q.D + this.D * q.x) * denom;
} else {
// Z is the biggest, so Z0 = 0.0
if (Math.abs(denomXY) < MINIMUM_RESOLUTION_SQUARED) {
//System.err.println(" Denominator is zero: no intersection");
return false;
}
final double denom = 1.0 / denomXY;
x0 = (-this.D * q.y - this.y * -q.D) * denom;
y0 = (this.x * -q.D + this.D * q.x) * denom;
z0 = 0.0;
}
// Once an intersecting line is determined, the next step is to intersect that line with the ellipsoid, which
// will yield zero, one, or two points.
// The ellipsoid equation: 1,0 = x^2/a^2 + y^2/b^2 + z^2/c^2
// 1.0 = (At+A0)^2/a^2 + (Bt+B0)^2/b^2 + (Ct+C0)^2/c^2
// A^2 t^2 / a^2 + 2AA0t / a^2 + A0^2 / a^2 + B^2 t^2 / b^2 + 2BB0t / b^2 + B0^2 / b^2 + C^2 t^2 / c^2 + 2CC0t / c^2 + C0^2 / c^2 - 1,0 = 0.0
// [A^2 / a^2 + B^2 / b^2 + C^2 / c^2] t^2 + [2AA0 / a^2 + 2BB0 / b^2 + 2CC0 / c^2] t + [A0^2 / a^2 + B0^2 / b^2 + C0^2 / c^2 - 1,0] = 0.0
// Use the quadratic formula to determine t values and candidate point(s)
final double A = lineVectorX * lineVectorX * planetModel.inverseAbSquared +
lineVectorY * lineVectorY * planetModel.inverseAbSquared +
lineVectorZ * lineVectorZ * planetModel.inverseCSquared;
final double B = 2.0 * (lineVectorX * x0 * planetModel.inverseAbSquared + lineVectorY * y0 * planetModel.inverseAbSquared + lineVectorZ * z0 * planetModel.inverseCSquared);
final double C = x0 * x0 * planetModel.inverseAbSquared + y0 * y0 * planetModel.inverseAbSquared + z0 * z0 * planetModel.inverseCSquared - 1.0;
final double BsquaredMinus = B * B - 4.0 * A * C;
if (Math.abs(BsquaredMinus) < MINIMUM_RESOLUTION_SQUARED) {
//System.err.println(" One point of intersection");
// We're not interested in situations where there is only one solution; these are intersections but not crossings
return false;
} else if (BsquaredMinus > 0.0) {
//System.err.println(" Two points of intersection");
final double inverse2A = 1.0 / (2.0 * A);
// Two solutions
final double sqrtTerm = Math.sqrt(BsquaredMinus);
final double t1 = (-B + sqrtTerm) * inverse2A;
final double t2 = (-B - sqrtTerm) * inverse2A;
// Up to two points being returned. Do what we can to save on object creation though.
final double point1X = lineVectorX * t1 + x0;
final double point1Y = lineVectorY * t1 + y0;
final double point1Z = lineVectorZ * t1 + z0;
boolean point1Valid = true;
for (final Membership bound : bounds) {
if (!bound.isWithin(point1X, point1Y, point1Z)) {
point1Valid = false;
break;
}
}
if (point1Valid) {
for (final Membership bound : moreBounds) {
if (!bound.isWithin(point1X, point1Y, point1Z)) {
point1Valid = false;
break;
}
}
}
if (point1Valid) {
return true;
}
final double point2X = lineVectorX * t2 + x0;
final double point2Y = lineVectorY * t2 + y0;
final double point2Z = lineVectorZ * t2 + z0;
for (final Membership bound : bounds) {
if (!bound.isWithin(point2X, point2Y, point2Z)) {
return false;
}
}
for (final Membership bound : moreBounds) {
if (!bound.isWithin(point2X, point2Y, point2Z)) {
return false;
}
}
return true;
} else {
//System.err.println(" no solutions - no intersection");
return false;
}
}
/**
* Returns true if this plane and the other plane are functionally identical within the margin of error.
* Functionally identical means that the planes are so close to parallel that many aspects of planar math,
* like intersections, no longer have answers to within the required precision.
* @param p is the plane to compare against.
* @return true if the planes are functionally identical.
*/
public boolean isFunctionallyIdentical(final Plane p) {
// We can get the correlation by just doing a parallel plane check. That's basically finding
// out if the magnitude of the cross-product is "zero".
final double cross1 = this.y * p.z - this.z * p.y;
final double cross2 = this.z * p.x - this.x * p.z;
final double cross3 = this.x * p.y - this.y * p.x;
//System.out.println("cross product magnitude = "+(cross1 * cross1 + cross2 * cross2 + cross3 * cross3));
// Should be MINIMUM_RESOLUTION_SQUARED, but that gives us planes that are *almost* parallel, and those are problematic too,
// so we have a tighter constraint on parallelism in this method.
if (cross1 * cross1 + cross2 * cross2 + cross3 * cross3 >= 5 * MINIMUM_RESOLUTION) {
return false;
}
// Now, see whether the parallel planes are in fact on top of one another.
// The math:
// We need a single point that fulfills:
// Ax + By + Cz + D = 0
// Pick:
// x0 = -(A * D) / (A^2 + B^2 + C^2)
// y0 = -(B * D) / (A^2 + B^2 + C^2)
// z0 = -(C * D) / (A^2 + B^2 + C^2)
// Check:
// A (x0) + B (y0) + C (z0) + D =? 0
// A (-(A * D) / (A^2 + B^2 + C^2)) + B (-(B * D) / (A^2 + B^2 + C^2)) + C (-(C * D) / (A^2 + B^2 + C^2)) + D ?= 0
// -D [ A^2 / (A^2 + B^2 + C^2) + B^2 / (A^2 + B^2 + C^2) + C^2 / (A^2 + B^2 + C^2)] + D ?= 0
// Yes.
final double denom = 1.0 / (p.x * p.x + p.y * p.y + p.z * p.z);
return evaluateIsZero(-p.x * p.D * denom, -p.y * p.D * denom, -p.z * p.D * denom);
}
/**
* Returns true if this plane and the other plane are identical within the margin of error.
* @param p is the plane to compare against.
* @return true if the planes are numerically identical.
*/
public boolean isNumericallyIdentical(final Plane p) {
// We can get the correlation by just doing a parallel plane check. That's basically finding
// out if the magnitude of the cross-product is "zero".
final double cross1 = this.y * p.z - this.z * p.y;
final double cross2 = this.z * p.x - this.x * p.z;
final double cross3 = this.x * p.y - this.y * p.x;
//System.out.println("cross product magnitude = "+(cross1 * cross1 + cross2 * cross2 + cross3 * cross3));
if (cross1 * cross1 + cross2 * cross2 + cross3 * cross3 >= MINIMUM_RESOLUTION_SQUARED) {
return false;
}
/* Old method
if (Math.abs(this.y * p.z - this.z * p.y) >= MINIMUM_RESOLUTION)
return false;
if (Math.abs(this.z * p.x - this.x * p.z) >= MINIMUM_RESOLUTION)
return false;
if (Math.abs(this.x * p.y - this.y * p.x) >= MINIMUM_RESOLUTION)
return false;
*/
// Now, see whether the parallel planes are in fact on top of one another.
// The math:
// We need a single point that fulfills:
// Ax + By + Cz + D = 0
// Pick:
// x0 = -(A * D) / (A^2 + B^2 + C^2)
// y0 = -(B * D) / (A^2 + B^2 + C^2)
// z0 = -(C * D) / (A^2 + B^2 + C^2)
// Check:
// A (x0) + B (y0) + C (z0) + D =? 0
// A (-(A * D) / (A^2 + B^2 + C^2)) + B (-(B * D) / (A^2 + B^2 + C^2)) + C (-(C * D) / (A^2 + B^2 + C^2)) + D ?= 0
// -D [ A^2 / (A^2 + B^2 + C^2) + B^2 / (A^2 + B^2 + C^2) + C^2 / (A^2 + B^2 + C^2)] + D ?= 0
// Yes.
final double denom = 1.0 / (p.x * p.x + p.y * p.y + p.z * p.z);
return evaluateIsZero(-p.x * p.D * denom, -p.y * p.D * denom, -p.z * p.D * denom);
}
/**
* Locate a point that is within the specified bounds and on the specified plane, that has an arcDistance as
* specified from the startPoint.
* @param planetModel is the planet model.
* @param arcDistanceValue is the arc distance.
* @param startPoint is the starting point.
* @param bounds are the bounds.
* @return zero, one, or two points.
*/
public GeoPoint[] findArcDistancePoints(final PlanetModel planetModel, final double arcDistanceValue, final GeoPoint startPoint, final Membership... bounds) {
if (Math.abs(D) >= MINIMUM_RESOLUTION) {
throw new IllegalStateException("Can't find arc distance using plane that doesn't go through origin");
}
if (!evaluateIsZero(startPoint)) {
throw new IllegalArgumentException("Start point is not on plane");
}
// The following assertion fails at times even for planes that were *explicitly* normalized, so I've disabled the check.
//assert Math.abs(x*x + y*y + z*z - 1.0) < MINIMUM_RESOLUTION_SQUARED : "Plane needs to be normalized";
// The first step is to rotate coordinates for the point so that the plane lies on the x-y plane.
// To acheive this, there will need to be three rotations:
// (1) rotate the plane in x-y so that the y axis lies in it.
// (2) rotate the plane in x-z so that the plane lies on the x-y plane.
// (3) rotate in x-y so that the starting vector points to (1,0,0).
// This presumes a normalized plane!!
final double azimuthMagnitude = Math.sqrt(this.x * this.x + this.y * this.y);
final double cosPlaneAltitude = this.z;
final double sinPlaneAltitude = azimuthMagnitude;
final double cosPlaneAzimuth = this.x / azimuthMagnitude;
final double sinPlaneAzimuth = this.y / azimuthMagnitude;
assert Math.abs(sinPlaneAltitude * sinPlaneAltitude + cosPlaneAltitude * cosPlaneAltitude - 1.0) < MINIMUM_RESOLUTION : "Improper sin/cos of altitude: "+(sinPlaneAltitude * sinPlaneAltitude + cosPlaneAltitude * cosPlaneAltitude);
assert Math.abs(sinPlaneAzimuth * sinPlaneAzimuth + cosPlaneAzimuth * cosPlaneAzimuth - 1.0) < MINIMUM_RESOLUTION : "Improper sin/cos of azimuth: "+(sinPlaneAzimuth * sinPlaneAzimuth + cosPlaneAzimuth * cosPlaneAzimuth);
// Coordinate rotation formula:
// xT = xS cos T - yS sin T
// yT = xS sin T + yS cos T
// But we're rotating backwards, so use:
// sin (-T) = -sin (T)
// cos (-T) = cos (T)
// Now, rotate startpoint in x-y
final double x0 = startPoint.x;
final double y0 = startPoint.y;
final double z0 = startPoint.z;
final double x1 = x0 * cosPlaneAzimuth + y0 * sinPlaneAzimuth;
final double y1 = -x0 * sinPlaneAzimuth + y0 * cosPlaneAzimuth;
final double z1 = z0;
// Rotate now in x-z
final double x2 = x1 * cosPlaneAltitude - z1 * sinPlaneAltitude;
final double y2 = y1;
final double z2 = +x1 * sinPlaneAltitude + z1 * cosPlaneAltitude;
assert Math.abs(z2) < MINIMUM_RESOLUTION : "Rotation should have put startpoint on x-y plane, instead has value "+z2;
// Ok, we have the start point on the x-y plane. To apply the arc distance, we
// next need to convert to an angle (in radians).
final double startAngle = Math.atan2(y2, x2);
// To apply the arc distance, just add to startAngle.
final double point1Angle = startAngle + arcDistanceValue;
final double point2Angle = startAngle - arcDistanceValue;
// Convert each point to x-y
final double point1x2 = Math.cos(point1Angle);
final double point1y2 = Math.sin(point1Angle);
final double point1z2 = 0.0;
final double point2x2 = Math.cos(point2Angle);
final double point2y2 = Math.sin(point2Angle);
final double point2z2 = 0.0;
// Now, do the reverse rotations for both points
// Altitude...
final double point1x1 = point1x2 * cosPlaneAltitude + point1z2 * sinPlaneAltitude;
final double point1y1 = point1y2;
final double point1z1 = -point1x2 * sinPlaneAltitude + point1z2 * cosPlaneAltitude;
final double point2x1 = point2x2 * cosPlaneAltitude + point2z2 * sinPlaneAltitude;
final double point2y1 = point2y2;
final double point2z1 = -point2x2 * sinPlaneAltitude + point2z2 * cosPlaneAltitude;
// Azimuth...
final double point1x0 = point1x1 * cosPlaneAzimuth - point1y1 * sinPlaneAzimuth;
final double point1y0 = point1x1 * sinPlaneAzimuth + point1y1 * cosPlaneAzimuth;
final double point1z0 = point1z1;
final double point2x0 = point2x1 * cosPlaneAzimuth - point2y1 * sinPlaneAzimuth;
final double point2y0 = point2x1 * sinPlaneAzimuth + point2y1 * cosPlaneAzimuth;
final double point2z0 = point2z1;
final GeoPoint point1 = planetModel.createSurfacePoint(point1x0, point1y0, point1z0);
final GeoPoint point2 = planetModel.createSurfacePoint(point2x0, point2y0, point2z0);
// Figure out what to return
boolean isPoint1Inside = meetsAllBounds(point1, bounds);
boolean isPoint2Inside = meetsAllBounds(point2, bounds);
if (isPoint1Inside) {
if (isPoint2Inside) {
return new GeoPoint[]{point1, point2};
} else {
return new GeoPoint[]{point1};
}
} else {
if (isPoint2Inside) {
return new GeoPoint[]{point2};
} else {
return new GeoPoint[0];
}
}
}
/**
* Check if a vector meets the provided bounds.
* @param p is the vector.
* @param bounds are the bounds.
* @return true if the vector describes a point within the bounds.
*/
private static boolean meetsAllBounds(final Vector p, final Membership[] bounds) {
return meetsAllBounds(p.x, p.y, p.z, bounds);
}
/**
* Check if a vector meets the provided bounds.
* @param x is the x value.
* @param y is the y value.
* @param z is the z value.
* @param bounds are the bounds.
* @return true if the vector describes a point within the bounds.
*/
private static boolean meetsAllBounds(final double x, final double y, final double z, final Membership[] bounds) {
for (final Membership bound : bounds) {
if (!bound.isWithin(x,y,z))
return false;
}
return true;
}
/**
* Check if a vector meets the provided bounds.
* @param p is the vector.
* @param bounds are the bounds.
* @param moreBounds are an additional set of bounds.
* @return true if the vector describes a point within the bounds.
*/
private static boolean meetsAllBounds(final Vector p, final Membership[] bounds, final Membership[] moreBounds) {
return meetsAllBounds(p.x, p.y, p.z, bounds, moreBounds);
}
/**
* Check if a vector meets the provided bounds.
* @param x is the x value.
* @param y is the y value.
* @param z is the z value.
* @param bounds are the bounds.
* @param moreBounds are an additional set of bounds.
* @return true if the vector describes a point within the bounds.
*/
private static boolean meetsAllBounds(final double x, final double y, final double z, final Membership[] bounds,
final Membership[] moreBounds) {
return meetsAllBounds(x,y,z, bounds) && meetsAllBounds(x,y,z, moreBounds);
}
/**
* Find a sample point on the intersection between two planes and the world.
* @param planetModel is the planet model.
* @param q is the second plane to consider.
* @return a sample point that is on the intersection between the two planes and the world.
*/
public GeoPoint getSampleIntersectionPoint(final PlanetModel planetModel, final Plane q) {
final GeoPoint[] intersections = findIntersections(planetModel, q, NO_BOUNDS, NO_BOUNDS);
if (intersections.length == 0)
return null;
return intersections[0];
}
@Override
public String toString() {
return "[A=" + x + ", B=" + y + "; C=" + z + "; D=" + D + "]";
}
@Override
public boolean equals(Object o) {
if (!super.equals(o))
return false;
if (!(o instanceof Plane))
return false;
Plane other = (Plane) o;
return other.D == D;
}
@Override
public int hashCode() {
int result = super.hashCode();
long temp;
temp = Double.doubleToLongBits(D);
result = 31 * result + (int) (temp ^ (temp >>> 32));
return result;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy