org.apache.lucene.spatial3d.geom.StandardXYZSolid Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of lucene-spatial3d Show documentation
Show all versions of lucene-spatial3d Show documentation
Lucene Spatial shapes implemented using 3D planar geometry
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.lucene.spatial3d.geom;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.IOException;
/**
* 3D rectangle, bounded on six sides by X,Y,Z limits
*
* @lucene.internal
*/
class StandardXYZSolid extends BaseXYZSolid {
/** Min-X */
protected final double minX;
/** Max-X */
protected final double maxX;
/** Min-Y */
protected final double minY;
/** Max-Y */
protected final double maxY;
/** Min-Z */
protected final double minZ;
/** Max-Z */
protected final double maxZ;
/** Whole world? */
protected final boolean isWholeWorld;
/** Min-X plane */
protected final SidedPlane minXPlane;
/** Max-X plane */
protected final SidedPlane maxXPlane;
/** Min-Y plane */
protected final SidedPlane minYPlane;
/** Max-Y plane */
protected final SidedPlane maxYPlane;
/** Min-Z plane */
protected final SidedPlane minZPlane;
/** Max-Z plane */
protected final SidedPlane maxZPlane;
/** true if minXPlane intersects globe */
protected final boolean minXPlaneIntersects;
/** true if maxXPlane intersects globe */
protected final boolean maxXPlaneIntersects;
/** true if minYPlane intersects globe */
protected final boolean minYPlaneIntersects;
/** true if maxYPlane intersects globe */
protected final boolean maxYPlaneIntersects;
/** true if minZPlane intersects globe */
protected final boolean minZPlaneIntersects;
/** true if maxZPlane intersects globe */
protected final boolean maxZPlaneIntersects;
/** These are the edge points of the shape, which are defined to be at least one point on
* each surface area boundary. In the case of a solid, this includes points which represent
* the intersection of XYZ bounding planes and the planet, as well as points representing
* the intersection of single bounding planes with the planet itself.
*/
protected final GeoPoint[] edgePoints;
/** Notable points for minXPlane */
protected final GeoPoint[] notableMinXPoints;
/** Notable points for maxXPlane */
protected final GeoPoint[] notableMaxXPoints;
/** Notable points for minYPlane */
protected final GeoPoint[] notableMinYPoints;
/** Notable points for maxYPlane */
protected final GeoPoint[] notableMaxYPoints;
/** Notable points for minZPlane */
protected final GeoPoint[] notableMinZPoints;
/** Notable points for maxZPlane */
protected final GeoPoint[] notableMaxZPoints;
/**
* Sole constructor
*
*@param planetModel is the planet model.
*@param minX is the minimum X value.
*@param maxX is the maximum X value.
*@param minY is the minimum Y value.
*@param maxY is the maximum Y value.
*@param minZ is the minimum Z value.
*@param maxZ is the maximum Z value.
*/
public StandardXYZSolid(final PlanetModel planetModel,
final double minX,
final double maxX,
final double minY,
final double maxY,
final double minZ,
final double maxZ) {
super(planetModel);
// Argument checking
if (maxX - minX < Vector.MINIMUM_RESOLUTION)
throw new IllegalArgumentException("X values in wrong order or identical");
if (maxY - minY < Vector.MINIMUM_RESOLUTION)
throw new IllegalArgumentException("Y values in wrong order or identical");
if (maxZ - minZ < Vector.MINIMUM_RESOLUTION)
throw new IllegalArgumentException("Z values in wrong order or identical");
this.minX = minX;
this.maxX = maxX;
this.minY = minY;
this.maxY = maxY;
this.minZ = minZ;
this.maxZ = maxZ;
final double worldMinX = planetModel.getMinimumXValue();
final double worldMaxX = planetModel.getMaximumXValue();
final double worldMinY = planetModel.getMinimumYValue();
final double worldMaxY = planetModel.getMaximumYValue();
final double worldMinZ = planetModel.getMinimumZValue();
final double worldMaxZ = planetModel.getMaximumZValue();
// We must distinguish between the case where the solid represents the entire world,
// and when the solid has no overlap with any part of the surface. In both cases,
// there will be no edgepoints.
isWholeWorld =
(minX - worldMinX < -Vector.MINIMUM_RESOLUTION) &&
(maxX - worldMaxX > Vector.MINIMUM_RESOLUTION) &&
(minY - worldMinY < -Vector.MINIMUM_RESOLUTION) &&
(maxY - worldMaxY > Vector.MINIMUM_RESOLUTION) &&
(minZ - worldMinZ < -Vector.MINIMUM_RESOLUTION) &&
(maxZ - worldMaxZ > Vector.MINIMUM_RESOLUTION);
if (isWholeWorld) {
minXPlane = null;
maxXPlane = null;
minYPlane = null;
maxYPlane = null;
minZPlane = null;
maxZPlane = null;
minXPlaneIntersects = false;
maxXPlaneIntersects = false;
minYPlaneIntersects = false;
maxYPlaneIntersects = false;
minZPlaneIntersects = false;
maxZPlaneIntersects = false;
notableMinXPoints = null;
notableMaxXPoints = null;
notableMinYPoints = null;
notableMaxYPoints = null;
notableMinZPoints = null;
notableMaxZPoints = null;
edgePoints = null;
} else {
// Construct the planes
minXPlane = new SidedPlane(maxX,0.0,0.0,xUnitVector,-minX);
maxXPlane = new SidedPlane(minX,0.0,0.0,xUnitVector,-maxX);
minYPlane = new SidedPlane(0.0,maxY,0.0,yUnitVector,-minY);
maxYPlane = new SidedPlane(0.0,minY,0.0,yUnitVector,-maxY);
minZPlane = new SidedPlane(0.0,0.0,maxZ,zUnitVector,-minZ);
maxZPlane = new SidedPlane(0.0,0.0,minZ,zUnitVector,-maxZ);
// We need at least one point on the planet surface for each manifestation of the shape.
// There can be up to 2 (on opposite sides of the world). But we have to go through
// 12 combinations of adjacent planes in order to find out if any have 2 intersection solution.
// Typically, this requires 12 square root operations.
final GeoPoint[] minXminY = minXPlane.findIntersections(planetModel,minYPlane,maxXPlane,maxYPlane,minZPlane,maxZPlane);
final GeoPoint[] minXmaxY = minXPlane.findIntersections(planetModel,maxYPlane,maxXPlane,minYPlane,minZPlane,maxZPlane);
final GeoPoint[] minXminZ = minXPlane.findIntersections(planetModel,minZPlane,maxXPlane,maxZPlane,minYPlane,maxYPlane);
final GeoPoint[] minXmaxZ = minXPlane.findIntersections(planetModel,maxZPlane,maxXPlane,minZPlane,minYPlane,maxYPlane);
final GeoPoint[] maxXminY = maxXPlane.findIntersections(planetModel,minYPlane,minXPlane,maxYPlane,minZPlane,maxZPlane);
final GeoPoint[] maxXmaxY = maxXPlane.findIntersections(planetModel,maxYPlane,minXPlane,minYPlane,minZPlane,maxZPlane);
final GeoPoint[] maxXminZ = maxXPlane.findIntersections(planetModel,minZPlane,minXPlane,maxZPlane,minYPlane,maxYPlane);
final GeoPoint[] maxXmaxZ = maxXPlane.findIntersections(planetModel,maxZPlane,minXPlane,minZPlane,minYPlane,maxYPlane);
final GeoPoint[] minYminZ = minYPlane.findIntersections(planetModel,minZPlane,maxYPlane,maxZPlane,minXPlane,maxXPlane);
final GeoPoint[] minYmaxZ = minYPlane.findIntersections(planetModel,maxZPlane,maxYPlane,minZPlane,minXPlane,maxXPlane);
final GeoPoint[] maxYminZ = maxYPlane.findIntersections(planetModel,minZPlane,minYPlane,maxZPlane,minXPlane,maxXPlane);
final GeoPoint[] maxYmaxZ = maxYPlane.findIntersections(planetModel,maxZPlane,minYPlane,minZPlane,minXPlane,maxXPlane);
notableMinXPoints = glueTogether(minXminY, minXmaxY, minXminZ, minXmaxZ);
notableMaxXPoints = glueTogether(maxXminY, maxXmaxY, maxXminZ, maxXmaxZ);
notableMinYPoints = glueTogether(minXminY, maxXminY, minYminZ, minYmaxZ);
notableMaxYPoints = glueTogether(minXmaxY, maxXmaxY, maxYminZ, maxYmaxZ);
notableMinZPoints = glueTogether(minXminZ, maxXminZ, minYminZ, maxYminZ);
notableMaxZPoints = glueTogether(minXmaxZ, maxXmaxZ, minYmaxZ, maxYmaxZ);
//System.err.println(
// " notableMinXPoints="+Arrays.asList(notableMinXPoints)+" notableMaxXPoints="+Arrays.asList(notableMaxXPoints)+
// " notableMinYPoints="+Arrays.asList(notableMinYPoints)+" notableMaxYPoints="+Arrays.asList(notableMaxYPoints)+
// " notableMinZPoints="+Arrays.asList(notableMinZPoints)+" notableMaxZPoints="+Arrays.asList(notableMaxZPoints));
// Now, compute the edge points.
// This is the trickiest part of setting up an XYZSolid. We've computed intersections already, so
// we'll start there.
// There can be a number of shapes, each of which needs an edgepoint. Each side by itself might contribute
// an edgepoint, for instance, if the plane describing that side intercepts the planet in such a way that the ellipse
// of interception does not meet any other planes. Plane intersections can each contribute 0, 1, or 2 edgepoints.
//
// All of this makes for a lot of potential edgepoints, but I believe these can be pruned back with careful analysis.
// I haven't yet done that analysis, however, so I will treat them all as individual edgepoints.
// The cases we are looking for are when the four corner points for any given
// plane are all outside of the world, AND that plane intersects the world.
// There are eight corner points all told; we must evaluate these WRT the planet surface.
final boolean minXminYminZ = planetModel.pointOutside(minX, minY, minZ);
final boolean minXminYmaxZ = planetModel.pointOutside(minX, minY, maxZ);
final boolean minXmaxYminZ = planetModel.pointOutside(minX, maxY, minZ);
final boolean minXmaxYmaxZ = planetModel.pointOutside(minX, maxY, maxZ);
final boolean maxXminYminZ = planetModel.pointOutside(maxX, minY, minZ);
final boolean maxXminYmaxZ = planetModel.pointOutside(maxX, minY, maxZ);
final boolean maxXmaxYminZ = planetModel.pointOutside(maxX, maxY, minZ);
final boolean maxXmaxYmaxZ = planetModel.pointOutside(maxX, maxY, maxZ);
//System.err.println("Outside world: minXminYminZ="+minXminYminZ+" minXminYmaxZ="+minXminYmaxZ+" minXmaxYminZ="+minXmaxYminZ+
// " minXmaxYmaxZ="+minXmaxYmaxZ+" maxXminYminZ="+maxXminYminZ+" maxXminYmaxZ="+maxXminYmaxZ+" maxXmaxYminZ="+maxXmaxYminZ+
// " maxXmaxYmaxZ="+maxXmaxYmaxZ);
// Look at single-plane/world intersections.
// We detect these by looking at the world model and noting its x, y, and z bounds.
final GeoPoint[] minXEdges;
if (minX - worldMinX >= -Vector.MINIMUM_RESOLUTION && minX - worldMaxX <= Vector.MINIMUM_RESOLUTION &&
minY < 0.0 && maxY > 0.0 && minZ < 0.0 && maxZ > 0.0 &&
minXminYminZ && minXminYmaxZ && minXmaxYminZ && minXmaxYmaxZ) {
// Find any point on the minX plane that intersects the world
// First construct a perpendicular plane that will allow us to find a sample point.
// This plane is vertical and goes through the points (0,0,0) and (1,0,0)
// Then use it to compute a sample point.
final GeoPoint intPoint = minXPlane.getSampleIntersectionPoint(planetModel, xVerticalPlane);
if (intPoint != null) {
minXEdges = new GeoPoint[]{intPoint};
} else {
// No intersection found?
minXEdges = EMPTY_POINTS;
}
} else {
minXEdges = EMPTY_POINTS;
}
final GeoPoint[] maxXEdges;
if (maxX - worldMinX >= -Vector.MINIMUM_RESOLUTION && maxX - worldMaxX <= Vector.MINIMUM_RESOLUTION &&
minY < 0.0 && maxY > 0.0 && minZ < 0.0 && maxZ > 0.0 &&
maxXminYminZ && maxXminYmaxZ && maxXmaxYminZ && maxXmaxYmaxZ) {
// Find any point on the maxX plane that intersects the world
// First construct a perpendicular plane that will allow us to find a sample point.
// This plane is vertical and goes through the points (0,0,0) and (1,0,0)
// Then use it to compute a sample point.
final GeoPoint intPoint = maxXPlane.getSampleIntersectionPoint(planetModel, xVerticalPlane);
if (intPoint != null) {
maxXEdges = new GeoPoint[]{intPoint};
} else {
maxXEdges = EMPTY_POINTS;
}
} else {
maxXEdges = EMPTY_POINTS;
}
final GeoPoint[] minYEdges;
if (minY - worldMinY >= -Vector.MINIMUM_RESOLUTION && minY - worldMaxY <= Vector.MINIMUM_RESOLUTION &&
minX < 0.0 && maxX > 0.0 && minZ < 0.0 && maxZ > 0.0 &&
minXminYminZ && minXminYmaxZ && maxXminYminZ && maxXminYmaxZ) {
// Find any point on the minY plane that intersects the world
// First construct a perpendicular plane that will allow us to find a sample point.
// This plane is vertical and goes through the points (0,0,0) and (0,1,0)
// Then use it to compute a sample point.
final GeoPoint intPoint = minYPlane.getSampleIntersectionPoint(planetModel, yVerticalPlane);
if (intPoint != null) {
minYEdges = new GeoPoint[]{intPoint};
} else {
minYEdges = EMPTY_POINTS;
}
} else {
minYEdges = EMPTY_POINTS;
}
final GeoPoint[] maxYEdges;
if (maxY - worldMinY >= -Vector.MINIMUM_RESOLUTION && maxY - worldMaxY <= Vector.MINIMUM_RESOLUTION &&
minX < 0.0 && maxX > 0.0 && minZ < 0.0 && maxZ > 0.0 &&
minXmaxYminZ && minXmaxYmaxZ && maxXmaxYminZ && maxXmaxYmaxZ) {
// Find any point on the maxY plane that intersects the world
// First construct a perpendicular plane that will allow us to find a sample point.
// This plane is vertical and goes through the points (0,0,0) and (0,1,0)
// Then use it to compute a sample point.
final GeoPoint intPoint = maxYPlane.getSampleIntersectionPoint(planetModel, yVerticalPlane);
if (intPoint != null) {
maxYEdges = new GeoPoint[]{intPoint};
} else {
maxYEdges = EMPTY_POINTS;
}
} else {
maxYEdges = EMPTY_POINTS;
}
final GeoPoint[] minZEdges;
if (minZ - worldMinZ >= -Vector.MINIMUM_RESOLUTION && minZ - worldMaxZ <= Vector.MINIMUM_RESOLUTION &&
minX < 0.0 && maxX > 0.0 && minY < 0.0 && maxY > 0.0 &&
minXminYminZ && minXmaxYminZ && maxXminYminZ && maxXmaxYminZ) {
// Find any point on the minZ plane that intersects the world
// First construct a perpendicular plane that will allow us to find a sample point.
// This plane is vertical and goes through the points (0,0,0) and (1,0,0)
// Then use it to compute a sample point.
final GeoPoint intPoint = minZPlane.getSampleIntersectionPoint(planetModel, xVerticalPlane);
if (intPoint != null) {
minZEdges = new GeoPoint[]{intPoint};
} else {
minZEdges = EMPTY_POINTS;
}
} else {
minZEdges = EMPTY_POINTS;
}
final GeoPoint[] maxZEdges;
if (maxZ - worldMinZ >= -Vector.MINIMUM_RESOLUTION && maxZ - worldMaxZ <= Vector.MINIMUM_RESOLUTION &&
minX < 0.0 && maxX > 0.0 && minY < 0.0 && maxY > 0.0 &&
minXminYmaxZ && minXmaxYmaxZ && maxXminYmaxZ && maxXmaxYmaxZ) {
// Find any point on the maxZ plane that intersects the world
// First construct a perpendicular plane that will allow us to find a sample point.
// This plane is vertical and goes through the points (0,0,0) and (1,0,0) (that is, its orientation doesn't matter)
// Then use it to compute a sample point.
final GeoPoint intPoint = maxZPlane.getSampleIntersectionPoint(planetModel, xVerticalPlane);
if (intPoint != null) {
maxZEdges = new GeoPoint[]{intPoint};
} else {
maxZEdges = EMPTY_POINTS;
}
} else {
maxZEdges = EMPTY_POINTS;
}
//System.err.println(
// " minXEdges="+Arrays.asList(minXEdges)+" maxXEdges="+Arrays.asList(maxXEdges)+
// " minYEdges="+Arrays.asList(minYEdges)+" maxYEdges="+Arrays.asList(maxYEdges)+
// " minZEdges="+Arrays.asList(minZEdges)+" maxZEdges="+Arrays.asList(maxZEdges));
minXPlaneIntersects = notableMinXPoints.length + minXEdges.length > 0;
maxXPlaneIntersects = notableMaxXPoints.length + maxXEdges.length > 0;
minYPlaneIntersects = notableMinYPoints.length + minYEdges.length > 0;
maxYPlaneIntersects = notableMaxYPoints.length + maxYEdges.length > 0;
minZPlaneIntersects = notableMinZPoints.length + minZEdges.length > 0;
maxZPlaneIntersects = notableMaxZPoints.length + maxZEdges.length > 0;
// Glue everything together. This is not a minimal set of edgepoints, as of now, but it does completely describe all shapes on the
// planet.
this.edgePoints = glueTogether(minXminY, minXmaxY, minXminZ, minXmaxZ,
maxXminY, maxXmaxY, maxXminZ, maxXmaxZ,
minYminZ, minYmaxZ, maxYminZ, maxYmaxZ,
minXEdges, maxXEdges, minYEdges, maxYEdges, minZEdges, maxZEdges);
}
}
/**
* Constructor for deserialization.
* @param planetModel is the planet model.
* @param inputStream is the input stream.
*/
public StandardXYZSolid(final PlanetModel planetModel, final InputStream inputStream) throws IOException {
this(planetModel,
SerializableObject.readDouble(inputStream),
SerializableObject.readDouble(inputStream),
SerializableObject.readDouble(inputStream),
SerializableObject.readDouble(inputStream),
SerializableObject.readDouble(inputStream),
SerializableObject.readDouble(inputStream));
}
@Override
public void write(final OutputStream outputStream) throws IOException {
SerializableObject.writeDouble(outputStream, minX);
SerializableObject.writeDouble(outputStream, maxX);
SerializableObject.writeDouble(outputStream, minY);
SerializableObject.writeDouble(outputStream, maxY);
SerializableObject.writeDouble(outputStream, minZ);
SerializableObject.writeDouble(outputStream, maxZ);
}
@Override
protected GeoPoint[] getEdgePoints() {
return edgePoints;
}
@Override
public boolean isWithin(final double x, final double y, final double z) {
if (isWholeWorld) {
return true;
}
return minXPlane.isWithin(x, y, z) &&
maxXPlane.isWithin(x, y, z) &&
minYPlane.isWithin(x, y, z) &&
maxYPlane.isWithin(x, y, z) &&
minZPlane.isWithin(x, y, z) &&
maxZPlane.isWithin(x, y, z);
}
@Override
public int getRelationship(final GeoShape path) {
if (isWholeWorld) {
if (path.getEdgePoints().length > 0)
return WITHIN;
return OVERLAPS;
}
/*
for (GeoPoint p : getEdgePoints()) {
System.err.println(" Edge point "+p+" path.isWithin()? "+path.isWithin(p));
}
for (GeoPoint p : path.getEdgePoints()) {
System.err.println(" path edge point "+p+" isWithin()? "+isWithin(p)+" minx="+minXPlane.evaluate(p)+" maxx="+maxXPlane.evaluate(p)+" miny="+minYPlane.evaluate(p)+" maxy="+maxYPlane.evaluate(p)+" minz="+minZPlane.evaluate(p)+" maxz="+maxZPlane.evaluate(p));
}
*/
//System.err.println(this+" getrelationship with "+path);
final int insideRectangle = isShapeInsideArea(path);
if (insideRectangle == SOME_INSIDE) {
//System.err.println(" some shape points inside area");
return OVERLAPS;
}
// Figure out if the entire XYZArea is contained by the shape.
final int insideShape = isAreaInsideShape(path);
if (insideShape == SOME_INSIDE) {
//System.err.println(" some area points inside shape");
return OVERLAPS;
}
if (insideRectangle == ALL_INSIDE && insideShape == ALL_INSIDE) {
//System.err.println(" inside of each other");
return OVERLAPS;
}
if ((minXPlaneIntersects && path.intersects(minXPlane, notableMinXPoints, maxXPlane, minYPlane, maxYPlane, minZPlane, maxZPlane)) ||
(maxXPlaneIntersects && path.intersects(maxXPlane, notableMaxXPoints, minXPlane, minYPlane, maxYPlane, minZPlane, maxZPlane)) ||
(minYPlaneIntersects && path.intersects(minYPlane, notableMinYPoints, maxYPlane, minXPlane, maxXPlane, minZPlane, maxZPlane)) ||
(maxYPlaneIntersects && path.intersects(maxYPlane, notableMaxYPoints, minYPlane, minXPlane, maxXPlane, minZPlane, maxZPlane)) ||
(minZPlaneIntersects && path.intersects(minZPlane, notableMinZPoints, maxZPlane, minXPlane, maxXPlane, minYPlane, maxYPlane)) ||
(maxZPlaneIntersects && path.intersects(maxZPlane, notableMaxZPoints, minZPlane, minXPlane, maxXPlane, minYPlane, maxYPlane))) {
//System.err.println(" edges intersect");
return OVERLAPS;
}
if (insideRectangle == ALL_INSIDE) {
//System.err.println(" all shape points inside area");
return WITHIN;
}
if (insideShape == ALL_INSIDE) {
//System.err.println(" all area points inside shape");
return CONTAINS;
}
//System.err.println(" disjoint");
return DISJOINT;
}
@Override
public boolean equals(Object o) {
if (!(o instanceof StandardXYZSolid))
return false;
StandardXYZSolid other = (StandardXYZSolid) o;
if (!super.equals(other) ||
other.isWholeWorld != isWholeWorld) {
return false;
}
if (!isWholeWorld) {
return other.minXPlane.equals(minXPlane) &&
other.maxXPlane.equals(maxXPlane) &&
other.minYPlane.equals(minYPlane) &&
other.maxYPlane.equals(maxYPlane) &&
other.minZPlane.equals(minZPlane) &&
other.maxZPlane.equals(maxZPlane);
}
return true;
}
@Override
public int hashCode() {
int result = super.hashCode();
result = 31 * result + (isWholeWorld?1:0);
if (!isWholeWorld) {
result = 31 * result + minXPlane.hashCode();
result = 31 * result + maxXPlane.hashCode();
result = 31 * result + minYPlane.hashCode();
result = 31 * result + maxYPlane.hashCode();
result = 31 * result + minZPlane.hashCode();
result = 31 * result + maxZPlane.hashCode();
}
return result;
}
@Override
public String toString() {
return "StandardXYZSolid: {planetmodel="+planetModel+", isWholeWorld="+isWholeWorld+", minXplane="+minXPlane+", maxXplane="+maxXPlane+", minYplane="+minYPlane+", maxYplane="+maxYPlane+", minZplane="+minZPlane+", maxZplane="+maxZPlane+"}";
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy