org.apache.lucene.spatial3d.geom.XYdZSolid Maven / Gradle / Ivy
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.lucene.spatial3d.geom;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
/**
* 3D rectangle, bounded on six sides by X,Y,Z limits, degenerate in Z
*
* @lucene.internal
*/
class XYdZSolid extends BaseXYZSolid {
/** Min-X */
protected final double minX;
/** Max-X */
protected final double maxX;
/** Min-Y */
protected final double minY;
/** Max-Y */
protected final double maxY;
/** Z */
protected final double Z;
/** Min-X plane */
protected final SidedPlane minXPlane;
/** Max-X plane */
protected final SidedPlane maxXPlane;
/** Min-Y plane */
protected final SidedPlane minYPlane;
/** Max-Y plane */
protected final SidedPlane maxYPlane;
/** Z plane */
protected final Plane zPlane;
/**
* These are the edge points of the shape, which are defined to be at least one point on each
* surface area boundary. In the case of a solid, this includes points which represent the
* intersection of XYZ bounding planes and the planet, as well as points representing the
* intersection of single bounding planes with the planet itself.
*/
protected final GeoPoint[] edgePoints;
/** Notable points for ZPlane */
protected final GeoPoint[] notableZPoints;
/**
* Sole constructor
*
* @param planetModel is the planet model.
* @param minX is the minimum X value.
* @param maxX is the maximum X value.
* @param minY is the minimum Y value.
* @param maxY is the maximum Y value.
* @param Z is the Z value.
*/
public XYdZSolid(
final PlanetModel planetModel,
final double minX,
final double maxX,
final double minY,
final double maxY,
final double Z) {
super(planetModel);
// Argument checking
if (maxX - minX < Vector.MINIMUM_RESOLUTION)
throw new IllegalArgumentException("X values in wrong order or identical");
if (maxY - minY < Vector.MINIMUM_RESOLUTION)
throw new IllegalArgumentException("Y values in wrong order or identical");
this.minX = minX;
this.maxX = maxX;
this.minY = minY;
this.maxY = maxY;
this.Z = Z;
final double worldMinZ = planetModel.getMinimumZValue();
final double worldMaxZ = planetModel.getMaximumZValue();
// Construct the planes
minXPlane = new SidedPlane(maxX, 0.0, 0.0, xUnitVector, -minX);
maxXPlane = new SidedPlane(minX, 0.0, 0.0, xUnitVector, -maxX);
minYPlane = new SidedPlane(0.0, maxY, 0.0, yUnitVector, -minY);
maxYPlane = new SidedPlane(0.0, minY, 0.0, yUnitVector, -maxY);
zPlane = new Plane(zUnitVector, -Z);
// We need at least one point on the planet surface for each manifestation of the shape.
// There can be up to 2 (on opposite sides of the world). But we have to go through
// 4 combinations of adjacent planes in order to find out if any have 2 intersection solution.
// Typically, this requires 4 square root operations.
final GeoPoint[] minXZ =
minXPlane.findIntersections(planetModel, zPlane, maxXPlane, minYPlane, maxYPlane);
final GeoPoint[] maxXZ =
maxXPlane.findIntersections(planetModel, zPlane, minXPlane, minYPlane, maxYPlane);
final GeoPoint[] minYZ =
minYPlane.findIntersections(planetModel, zPlane, maxYPlane, minXPlane, maxXPlane);
final GeoPoint[] maxYZ =
maxYPlane.findIntersections(planetModel, zPlane, minYPlane, minXPlane, maxXPlane);
notableZPoints = glueTogether(minXZ, maxXZ, minYZ, maxYZ);
// Now, compute the edge points.
// This is the trickiest part of setting up an XYZSolid. We've computed intersections already,
// so we'll start there. We know that at most there will be two disconnected shapes on the
// planet surface. But there's also a case where exactly one plane slices through the world,
// and none of the bounding plane intersections do. Thus, if we don't find any of the edge
// intersection cases, we have to look for that last case.
// If we still haven't encountered anything, we need to look at single-plane/world
// intersections.
// We detect these by looking at the world model and noting its x, y, and z bounds.
// The cases we are looking for are when the four corner points for any given
// plane are all outside of the world, AND that plane intersects the world.
// There are four corner points all told; we must evaluate these WRT the planet surface.
final boolean minXminYZ = planetModel.pointOutside(minX, minY, Z);
final boolean minXmaxYZ = planetModel.pointOutside(minX, maxY, Z);
final boolean maxXminYZ = planetModel.pointOutside(maxX, minY, Z);
final boolean maxXmaxYZ = planetModel.pointOutside(maxX, maxY, Z);
final GeoPoint[] zEdges;
if (Z - worldMinZ >= -Vector.MINIMUM_RESOLUTION
&& Z - worldMaxZ <= Vector.MINIMUM_RESOLUTION
&& minX < 0.0
&& maxX > 0.0
&& minY < 0.0
&& maxY > 0.0
&& minXminYZ
&& minXmaxYZ
&& maxXminYZ
&& maxXmaxYZ) {
// Find any point on the minZ plane that intersects the world
// First construct a perpendicular plane that will allow us to find a sample point.
// This plane is vertical and goes through the points (0,0,0) and (1,0,0)
// Then use it to compute a sample point.
final GeoPoint intPoint = zPlane.getSampleIntersectionPoint(planetModel, xVerticalPlane);
if (intPoint != null) {
zEdges = new GeoPoint[] {intPoint};
} else {
zEdges = EMPTY_POINTS;
}
} else {
zEdges = EMPTY_POINTS;
}
this.edgePoints = glueTogether(minXZ, maxXZ, minYZ, maxYZ, zEdges);
}
/**
* Constructor for deserialization.
*
* @param planetModel is the planet model.
* @param inputStream is the input stream.
*/
public XYdZSolid(final PlanetModel planetModel, final InputStream inputStream)
throws IOException {
this(
planetModel,
SerializableObject.readDouble(inputStream),
SerializableObject.readDouble(inputStream),
SerializableObject.readDouble(inputStream),
SerializableObject.readDouble(inputStream),
SerializableObject.readDouble(inputStream));
}
@Override
public void write(final OutputStream outputStream) throws IOException {
SerializableObject.writeDouble(outputStream, minX);
SerializableObject.writeDouble(outputStream, maxX);
SerializableObject.writeDouble(outputStream, minY);
SerializableObject.writeDouble(outputStream, maxY);
SerializableObject.writeDouble(outputStream, Z);
}
@Override
protected GeoPoint[] getEdgePoints() {
return edgePoints;
}
@Override
public boolean isWithin(final double x, final double y, final double z) {
return minXPlane.isWithin(x, y, z)
&& maxXPlane.isWithin(x, y, z)
&& minYPlane.isWithin(x, y, z)
&& maxYPlane.isWithin(x, y, z)
&& zPlane.evaluateIsZero(x, y, z);
}
@Override
public int getRelationship(final GeoShape path) {
// System.err.println(this + " getrelationship with " + path);
final int insideRectangle = isShapeInsideArea(path);
if (insideRectangle == SOME_INSIDE) {
// System.err.println(" some inside");
return OVERLAPS;
}
// Figure out if the entire XYZArea is contained by the shape.
final int insideShape = isAreaInsideShape(path);
if (insideShape == SOME_INSIDE) {
return OVERLAPS;
}
if (insideRectangle == ALL_INSIDE && insideShape == ALL_INSIDE) {
// System.err.println(" inside of each other");
return OVERLAPS;
}
if (path.intersects(zPlane, notableZPoints, minXPlane, maxXPlane, minYPlane, maxYPlane)) {
// System.err.println(" edges intersect");
return OVERLAPS;
}
if (insideRectangle == ALL_INSIDE) {
// System.err.println(" shape inside rectangle");
return WITHIN;
}
if (insideShape == ALL_INSIDE) {
// System.err.println(" shape contains rectangle");
return CONTAINS;
}
// System.err.println(" disjoint");
return DISJOINT;
}
@Override
public boolean equals(Object o) {
if (!(o instanceof XYdZSolid)) {
return false;
}
XYdZSolid other = (XYdZSolid) o;
if (!super.equals(other)) {
return false;
}
return other.minXPlane.equals(minXPlane)
&& other.maxXPlane.equals(maxXPlane)
&& other.minYPlane.equals(minYPlane)
&& other.maxYPlane.equals(maxYPlane)
&& other.zPlane.equals(zPlane);
}
@Override
public int hashCode() {
int result = super.hashCode();
result = 31 * result + minXPlane.hashCode();
result = 31 * result + maxXPlane.hashCode();
result = 31 * result + minYPlane.hashCode();
result = 31 * result + maxYPlane.hashCode();
result = 31 * result + zPlane.hashCode();
return result;
}
@Override
public String toString() {
return "XYdZSolid: {planetmodel="
+ planetModel
+ ", minXplane="
+ minXPlane
+ ", maxXplane="
+ maxXPlane
+ ", minYplane="
+ minYPlane
+ ", maxYplane="
+ maxYPlane
+ ", zplane="
+ zPlane
+ "}";
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy