org.apache.lucene.spatial3d.geom.dXYZSolid Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of lucene-spatial3d Show documentation
Show all versions of lucene-spatial3d Show documentation
Lucene Spatial shapes implemented using 3D planar geometry
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.lucene.spatial3d.geom;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
/**
* 3D rectangle, bounded on six sides by X,Y,Z limits, degenerate in X.
*
* @lucene.internal
*/
class dXYZSolid extends BaseXYZSolid {
/** X */
protected final double X;
/** Min-Y */
protected final double minY;
/** Max-Y */
protected final double maxY;
/** Min-Z */
protected final double minZ;
/** Max-Z */
protected final double maxZ;
/** X plane */
protected final Plane xPlane;
/** Min-Y plane */
protected final SidedPlane minYPlane;
/** Max-Y plane */
protected final SidedPlane maxYPlane;
/** Min-Z plane */
protected final SidedPlane minZPlane;
/** Max-Z plane */
protected final SidedPlane maxZPlane;
/**
* These are the edge points of the shape, which are defined to be at least one point on each
* surface area boundary. In the case of a solid, this includes points which represent the
* intersection of XYZ bounding planes and the planet, as well as points representing the
* intersection of single bounding planes with the planet itself.
*/
protected final GeoPoint[] edgePoints;
/** Notable points for XPlane */
protected final GeoPoint[] notableXPoints;
/**
* Sole constructor
*
* @param planetModel is the planet model.
* @param X is the X value.
* @param minY is the minimum Y value.
* @param maxY is the maximum Y value.
* @param minZ is the minimum Z value.
* @param maxZ is the maximum Z value.
*/
public dXYZSolid(
final PlanetModel planetModel,
final double X,
final double minY,
final double maxY,
final double minZ,
final double maxZ) {
super(planetModel);
// Argument checking
if (maxY - minY < Vector.MINIMUM_RESOLUTION)
throw new IllegalArgumentException("Y values in wrong order or identical");
if (maxZ - minZ < Vector.MINIMUM_RESOLUTION)
throw new IllegalArgumentException("Z values in wrong order or identical");
this.X = X;
this.minY = minY;
this.maxY = maxY;
this.minZ = minZ;
this.maxZ = maxZ;
final double worldMinX = planetModel.getMinimumXValue();
final double worldMaxX = planetModel.getMaximumXValue();
// Construct the planes
xPlane = new Plane(xUnitVector, -X);
minYPlane = new SidedPlane(0.0, maxY, 0.0, yUnitVector, -minY);
maxYPlane = new SidedPlane(0.0, minY, 0.0, yUnitVector, -maxY);
minZPlane = new SidedPlane(0.0, 0.0, maxZ, zUnitVector, -minZ);
maxZPlane = new SidedPlane(0.0, 0.0, minZ, zUnitVector, -maxZ);
// We need at least one point on the planet surface for each manifestation of the shape.
// There can be up to 2 (on opposite sides of the world). But we have to go through
// 4 combinations of adjacent planes in order to find out if any have 2 intersection solution.
// Typically, this requires 4 square root operations.
final GeoPoint[] XminY =
xPlane.findIntersections(planetModel, minYPlane, maxYPlane, minZPlane, maxZPlane);
final GeoPoint[] XmaxY =
xPlane.findIntersections(planetModel, maxYPlane, minYPlane, minZPlane, maxZPlane);
final GeoPoint[] XminZ =
xPlane.findIntersections(planetModel, minZPlane, maxZPlane, minYPlane, maxYPlane);
final GeoPoint[] XmaxZ =
xPlane.findIntersections(planetModel, maxZPlane, minZPlane, minYPlane, maxYPlane);
notableXPoints = glueTogether(XminY, XmaxY, XminZ, XmaxZ);
// Now, compute the edge points.
// This is the trickiest part of setting up an XYZSolid. We've computed intersections already,
// so
// we'll start there. We know that at most there will be two disconnected shapes on the planet
// surface.
// But there's also a case where exactly one plane slices through the world, and none of the
// bounding plane
// intersections do. Thus, if we don't find any of the edge intersection cases, we have to look
// for that last case.
// We need to look at single-plane/world intersections.
// We detect these by looking at the world model and noting its x, y, and z bounds.
// For the single-dimension degenerate case, there's really only one plane that can possibly
// intersect the world.
// The cases we are looking for are when the four corner points for any given
// plane are all outside of the world, AND that plane intersects the world.
// There are four corner points all told; we must evaluate these WRT the planet surface.
final boolean XminYminZ = planetModel.pointOutside(X, minY, minZ);
final boolean XminYmaxZ = planetModel.pointOutside(X, minY, maxZ);
final boolean XmaxYminZ = planetModel.pointOutside(X, maxY, minZ);
final boolean XmaxYmaxZ = planetModel.pointOutside(X, maxY, maxZ);
final GeoPoint[] xEdges;
if (X - worldMinX >= -Vector.MINIMUM_RESOLUTION
&& X - worldMaxX <= Vector.MINIMUM_RESOLUTION
&& minY < 0.0
&& maxY > 0.0
&& minZ < 0.0
&& maxZ > 0.0
&& XminYminZ
&& XminYmaxZ
&& XmaxYminZ
&& XmaxYmaxZ) {
// Find any point on the X plane that intersects the world
// First construct a perpendicular plane that will allow us to find a sample point.
// This plane is vertical and goes through the points (0,0,0) and (1,0,0)
// Then use it to compute a sample point.
final GeoPoint intPoint = xPlane.getSampleIntersectionPoint(planetModel, xVerticalPlane);
if (intPoint != null) {
xEdges = new GeoPoint[] {intPoint};
} else {
xEdges = EMPTY_POINTS;
}
} else {
xEdges = EMPTY_POINTS;
}
this.edgePoints = glueTogether(XminY, XmaxY, XminZ, XmaxZ, xEdges);
}
/**
* Constructor for deserialization.
*
* @param planetModel is the planet model.
* @param inputStream is the input stream.
*/
public dXYZSolid(final PlanetModel planetModel, final InputStream inputStream)
throws IOException {
this(
planetModel,
SerializableObject.readDouble(inputStream),
SerializableObject.readDouble(inputStream),
SerializableObject.readDouble(inputStream),
SerializableObject.readDouble(inputStream),
SerializableObject.readDouble(inputStream));
}
@Override
public void write(final OutputStream outputStream) throws IOException {
SerializableObject.writeDouble(outputStream, X);
SerializableObject.writeDouble(outputStream, minY);
SerializableObject.writeDouble(outputStream, maxY);
SerializableObject.writeDouble(outputStream, minZ);
SerializableObject.writeDouble(outputStream, maxZ);
}
@Override
protected GeoPoint[] getEdgePoints() {
return edgePoints;
}
@Override
public boolean isWithin(final double x, final double y, final double z) {
return xPlane.evaluateIsZero(x, y, z)
&& minYPlane.isWithin(x, y, z)
&& maxYPlane.isWithin(x, y, z)
&& minZPlane.isWithin(x, y, z)
&& maxZPlane.isWithin(x, y, z);
}
@Override
public int getRelationship(final GeoShape path) {
// System.err.println(this + " getRelationship with " + path);
final int insideRectangle = isShapeInsideArea(path);
if (insideRectangle == SOME_INSIDE) {
// System.err.println(" some shape points inside area");
return OVERLAPS;
}
// Figure out if the entire XYZArea is contained by the shape.
final int insideShape = isAreaInsideShape(path);
if (insideShape == SOME_INSIDE) {
// System.err.println(" some area points inside shape");
return OVERLAPS;
}
if (insideRectangle == ALL_INSIDE && insideShape == ALL_INSIDE) {
// System.err.println(" inside of each other");
return OVERLAPS;
}
// The entire locus of points in this shape is on a single plane, so we only need ot look for an
// intersection with that plane.
// System.err.println("xPlane = " + xPlane);
if (path.intersects(xPlane, notableXPoints, minYPlane, maxYPlane, minZPlane, maxZPlane)) {
// System.err.println(" edges intersect");
return OVERLAPS;
}
if (insideRectangle == ALL_INSIDE) {
// System.err.println(" shape points inside area");
return WITHIN;
}
if (insideShape == ALL_INSIDE) {
// System.err.println(" shape contains all area");
return CONTAINS;
}
// System.err.println(" disjoint");
return DISJOINT;
}
@Override
public boolean equals(Object o) {
if (!(o instanceof dXYZSolid)) {
return false;
}
dXYZSolid other = (dXYZSolid) o;
if (!super.equals(other)) {
return false;
}
return other.xPlane.equals(xPlane)
&& other.minYPlane.equals(minYPlane)
&& other.maxYPlane.equals(maxYPlane)
&& other.minZPlane.equals(minZPlane)
&& other.maxZPlane.equals(maxZPlane);
}
@Override
public int hashCode() {
int result = super.hashCode();
result = 31 * result + xPlane.hashCode();
result = 31 * result + minYPlane.hashCode();
result = 31 * result + maxYPlane.hashCode();
result = 31 * result + minZPlane.hashCode();
result = 31 * result + maxZPlane.hashCode();
return result;
}
@Override
public String toString() {
return "dXYZSolid: {planetmodel="
+ planetModel
+ ", xplane="
+ xPlane
+ ", minYplane="
+ minYPlane
+ ", maxYplane="
+ maxYPlane
+ ", minZplane="
+ minZPlane
+ ", maxZplane="
+ maxZPlane
+ "}";
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy