org.apache.lucene.spatial3d.geom.PlanetModel Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of lucene-spatial3d Show documentation
Show all versions of lucene-spatial3d Show documentation
Apache Lucene (module: spatial3d)
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.lucene.spatial3d.geom;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
/**
* Holds mathematical constants associated with the model of a planet.
*
* @lucene.experimental
*/
public class PlanetModel implements SerializableObject {
/** Planet model corresponding to sphere. */
public static final PlanetModel SPHERE = new PlanetModel(1.0, 1.0);
/** Planet model corresponding to WGS84 ellipsoid */
// see http://earth-info.nga.mil/GandG/publications/tr8350.2/wgs84fin.pdf
public static final PlanetModel WGS84 = new PlanetModel(6378137.0d, 6356752.314245d);
/** Planet model corresponding to Clarke 1866 ellipsoid */
// see https://georepository.com/ellipsoid_7008/Clarke-1866.html
public static final PlanetModel CLARKE_1866 = new PlanetModel(6378206.4d, 6356583.8d);
// Surface of the planet:
// x^2/a^2 + y^2/b^2 + z^2/zScaling^2 = 1.0
// Scaling factors are a,b,zScaling. geo3d can only support models where a==b, so use xyScaling
// instead.
/** Semi-major axis */
public final double a;
/** Semi-minor axis */
public final double b;
/** The x/y scaling factor */
public final double xyScaling;
/** The z scaling factor */
public final double zScaling;
/** The inverse of xyScaling */
public final double inverseXYScaling;
/** The inverse of zScaling */
public final double inverseZScaling;
/** The square of the inverse of xyScaling */
public final double inverseXYScalingSquared;
/** The square of the inverse of zScaling */
public final double inverseZScalingSquared;
/** The scaled flattening value */
public final double scaledFlattening;
/** The square ratio */
public final double squareRatio;
/** The mean radius of the planet */
// Computed as (2a + b) / 3 from: "Geodetic Reference System 1980" by H. Moritz
// ftp://athena.fsv.cvut.cz/ZFG/grs80-Moritz.pdf
public final double meanRadius;
/** The scale of the planet */
public final double scale;
/** The inverse of scale */
public final double inverseScale;
/** The mean radius of the planet model */
// We do NOT include radius, because all computations in geo3d are in radians, not meters.
// Compute north and south pole for planet model, since these are commonly used.
/** North pole */
public final GeoPoint NORTH_POLE;
/** South pole */
public final GeoPoint SOUTH_POLE;
/** Min X pole */
public final GeoPoint MIN_X_POLE;
/** Max X pole */
public final GeoPoint MAX_X_POLE;
/** Min Y pole */
public final GeoPoint MIN_Y_POLE;
/** Max Y pole */
public final GeoPoint MAX_Y_POLE;
/** Minimum surface distance between poles */
public final double minimumPoleDistance;
// ENCODING / DECODING CONSTANTS
/** bit space for integer encoding */
private static final int BITS = 32;
/** maximum magnitude value for *this* planet model */
public final double MAX_VALUE;
/** numeric space (buckets) for mapping double values into integer range */
private final double MUL;
/** scalar value used to decode from integer back into double space */
public final double DECODE;
/** Max encoded value */
public final int MAX_ENCODED_VALUE;
/** Min encoded value */
public final int MIN_ENCODED_VALUE;
/** utility class used to encode/decode from lat/lon (decimal degrees) into doc value integers */
public final DocValueEncoder docValueEncoder;
/**
* * Construct a Planet Model from the semi major axis, semi minor axis=.
*
* @param semiMajorAxis is the semi major axis (in meters) defined as 'a' in projection formulae.
* @param semiMinorAxis is the semi minor axis (in meters) defined as 'b' in projection formulae.
*/
public PlanetModel(final double semiMajorAxis, final double semiMinorAxis) {
this.a = semiMajorAxis;
this.b = semiMinorAxis;
this.meanRadius = (2.0 * semiMajorAxis + semiMinorAxis) / 3.0;
this.xyScaling = semiMajorAxis / meanRadius;
this.zScaling = semiMinorAxis / meanRadius;
this.scale = (2.0 * xyScaling + zScaling) / 3.0;
this.inverseXYScaling = 1.0 / xyScaling;
this.inverseZScaling = 1.0 / zScaling;
this.scaledFlattening = (xyScaling - zScaling) * inverseXYScaling;
this.squareRatio = (xyScaling * xyScaling - zScaling * zScaling) / (zScaling * zScaling);
this.inverseXYScalingSquared = inverseXYScaling * inverseXYScaling;
this.inverseZScalingSquared = inverseZScaling * inverseZScaling;
this.NORTH_POLE = new GeoPoint(zScaling, 0.0, 0.0, 1.0, Math.PI * 0.5, 0.0);
this.SOUTH_POLE = new GeoPoint(zScaling, 0.0, 0.0, -1.0, -Math.PI * 0.5, 0.0);
this.MIN_X_POLE = new GeoPoint(xyScaling, -1.0, 0.0, 0.0, 0.0, -Math.PI);
this.MAX_X_POLE = new GeoPoint(xyScaling, 1.0, 0.0, 0.0, 0.0, 0.0);
this.MIN_Y_POLE = new GeoPoint(xyScaling, 0.0, -1.0, 0.0, 0.0, -Math.PI * 0.5);
this.MAX_Y_POLE = new GeoPoint(xyScaling, 0.0, 1.0, 0.0, 0.0, Math.PI * 0.5);
this.inverseScale = 1.0 / scale;
this.minimumPoleDistance =
Math.min(surfaceDistance(NORTH_POLE, SOUTH_POLE), surfaceDistance(MIN_X_POLE, MAX_X_POLE));
this.MAX_VALUE = getMaximumMagnitude();
this.MUL = (0x1L << BITS) / (2 * this.MAX_VALUE);
this.DECODE = getNextSafeDouble(1 / MUL);
this.MIN_ENCODED_VALUE = encodeValue(-MAX_VALUE);
this.MAX_ENCODED_VALUE = encodeValue(MAX_VALUE);
this.docValueEncoder = new DocValueEncoder(this);
}
/**
* Deserialization constructor.
*
* @param inputStream is the input stream.
*/
public PlanetModel(final InputStream inputStream) throws IOException {
this(SerializableObject.readDouble(inputStream), SerializableObject.readDouble(inputStream));
}
@Override
public void write(final OutputStream outputStream) throws IOException {
SerializableObject.writeDouble(outputStream, a);
SerializableObject.writeDouble(outputStream, b);
}
/**
* Does this planet model describe a sphere?
*
* @return true if so.
*/
public boolean isSphere() {
return this.xyScaling == this.zScaling;
}
/**
* Find the minimum magnitude of all points on the ellipsoid.
*
* @return the minimum magnitude for the planet.
*/
public double getMinimumMagnitude() {
return Math.min(this.xyScaling, this.zScaling);
}
/**
* Find the maximum magnitude of all points on the ellipsoid.
*
* @return the maximum magnitude for the planet.
*/
public double getMaximumMagnitude() {
return Math.max(this.xyScaling, this.zScaling);
}
/**
* Find the minimum x value.
*
* @return the minimum X value.
*/
public double getMinimumXValue() {
return -this.xyScaling;
}
/**
* Find the maximum x value.
*
* @return the maximum X value.
*/
public double getMaximumXValue() {
return this.xyScaling;
}
/**
* Find the minimum y value.
*
* @return the minimum Y value.
*/
public double getMinimumYValue() {
return -this.xyScaling;
}
/**
* Find the maximum y value.
*
* @return the maximum Y value.
*/
public double getMaximumYValue() {
return this.xyScaling;
}
/**
* Find the minimum z value.
*
* @return the minimum Z value.
*/
public double getMinimumZValue() {
return -this.zScaling;
}
/**
* Find the maximum z value.
*
* @return the maximum Z value.
*/
public double getMaximumZValue() {
return this.zScaling;
}
/** return the calculated mean radius (in units provided by ab and c) */
public double getMeanRadius() {
return this.meanRadius;
}
/** encode the provided value from double to integer space */
public int encodeValue(double x) {
if (x > getMaximumMagnitude()) {
throw new IllegalArgumentException(
"value="
+ x
+ " is out-of-bounds (greater than planetMax="
+ getMaximumMagnitude()
+ ")");
}
if (x == getMaximumMagnitude()) {
x = Math.nextDown(x);
}
if (x < -getMaximumMagnitude()) {
throw new IllegalArgumentException(
"value="
+ x
+ " is out-of-bounds (less than than -planetMax="
+ -getMaximumMagnitude()
+ ")");
}
long result = (long) Math.floor(x / DECODE);
assert result >= Integer.MIN_VALUE;
assert result <= Integer.MAX_VALUE;
return (int) result;
}
/** Decodes a given integer back into the radian value according to the defined planet model */
public double decodeValue(int x) {
double result;
if (x == MIN_ENCODED_VALUE) {
// We must special case this, because -MAX_VALUE is not guaranteed to land precisely at a
// floor value, and we don't ever want to return a value outside of the planet's range
// (I think?). The max value is "safe" because we floor during encode:
result = -MAX_VALUE;
} else if (x == MAX_ENCODED_VALUE) {
result = MAX_VALUE;
} else {
// We decode to the center value; this keeps the encoding stable
result = (x + 0.5) * DECODE;
}
assert result >= -MAX_VALUE && result <= MAX_VALUE;
return result;
}
/** return reference to the DocValueEncoder used to encode/decode Geo3DDocValues */
public DocValueEncoder getDocValueEncoder() {
return this.docValueEncoder;
}
/**
* Returns a double value >= x such that if you multiply that value by an int, and then divide it
* by that int again, you get precisely the same value back
*/
private static double getNextSafeDouble(double x) {
// Move to double space:
long bits = Double.doubleToLongBits(x);
// Make sure we are beyond the actual maximum value:
bits += Integer.MAX_VALUE;
// Clear the bottom 32 bits:
bits &= ~((long) Integer.MAX_VALUE);
// Convert back to double:
double result = Double.longBitsToDouble(bits);
assert result >= x;
return result;
}
/**
* Check if point is on surface.
*
* @param v is the point to check.
* @return true if the point is on the planet surface.
*/
public boolean pointOnSurface(final Vector v) {
return pointOnSurface(v.x, v.y, v.z);
}
/**
* Check if point is on surface.
*
* @param x is the x coord.
* @param y is the y coord.
* @param z is the z coord.
*/
public boolean pointOnSurface(final double x, final double y, final double z) {
// Equation of planet surface is:
// x^2 / a^2 + y^2 / b^2 + z^2 / zScaling^2 - 1 = 0
return Math.abs(
x * x * inverseXYScaling * inverseXYScaling
+ y * y * inverseXYScaling * inverseXYScaling
+ z * z * inverseZScaling * inverseZScaling
- 1.0)
< Vector.MINIMUM_RESOLUTION;
}
/**
* Check if point is outside surface.
*
* @param v is the point to check.
* @return true if the point is outside the planet surface.
*/
public boolean pointOutside(final Vector v) {
return pointOutside(v.x, v.y, v.z);
}
/**
* Check if point is outside surface.
*
* @param x is the x coord.
* @param y is the y coord.
* @param z is the z coord.
*/
public boolean pointOutside(final double x, final double y, final double z) {
// Equation of planet surface is:
// x^2 / a^2 + y^2 / b^2 + z^2 / zScaling^2 - 1 = 0
return (x * x + y * y) * inverseXYScaling * inverseXYScaling
+ z * z * inverseZScaling * inverseZScaling
- 1.0
> Vector.MINIMUM_RESOLUTION;
}
/**
* Compute a GeoPoint that's scaled to actually be on the planet surface.
*
* @param vector is the vector.
* @return the scaled point.
*/
public GeoPoint createSurfacePoint(final Vector vector) {
return createSurfacePoint(vector.x, vector.y, vector.z);
}
/**
* Compute a GeoPoint that's based on (x,y,z) values, but is scaled to actually be on the planet
* surface.
*
* @param x is the x value.
* @param y is the y value.
* @param z is the z value.
* @return the scaled point.
*/
public GeoPoint createSurfacePoint(final double x, final double y, final double z) {
// The equation of the surface is:
// (x^2 / a^2 + y^2 / b^2 + z^2 / zScaling^2) = 1
// We will need to scale the passed-in x, y, z values:
// ((tx)^2 / a^2 + (ty)^2 / b^2 + (tz)^2 / zScaling^2) = 1
// t^2 * (x^2 / a^2 + y^2 / b^2 + z^2 / zScaling^2) = 1
// t = sqrt ( 1 / (x^2 / a^2 + y^2 / b^2 + z^2 / zScaling^2))
final double t =
Math.sqrt(
1.0
/ (x * x * inverseXYScalingSquared
+ y * y * inverseXYScalingSquared
+ z * z * inverseZScalingSquared));
return new GeoPoint(t * x, t * y, t * z);
}
/**
* Compute a GeoPoint that's a bisection between two other GeoPoints.
*
* @param pt1 is the first point.
* @param pt2 is the second point.
* @return the bisection point, or null if a unique one cannot be found.
*/
public GeoPoint bisection(final GeoPoint pt1, final GeoPoint pt2) {
final double A0 = (pt1.x + pt2.x) * 0.5;
final double B0 = (pt1.y + pt2.y) * 0.5;
final double C0 = (pt1.z + pt2.z) * 0.5;
final double denom =
inverseXYScalingSquared * A0 * A0
+ inverseXYScalingSquared * B0 * B0
+ inverseZScalingSquared * C0 * C0;
if (denom < Vector.MINIMUM_RESOLUTION) {
// Bisection is undefined
return null;
}
final double t = Math.sqrt(1.0 / denom);
return new GeoPoint(t * A0, t * B0, t * C0);
}
/**
* Compute surface distance between two points.
*
* @param pt1 is the first point.
* @param pt2 is the second point.
* @return the adjusted angle, when multiplied by the mean earth radius, yields a surface
* distance. This will differ from GeoPoint.arcDistance() only when the planet model is not a
* sphere. @see {@link GeoPoint#arcDistance(Vector)}
*/
public double surfaceDistance(final GeoPoint pt1, final GeoPoint pt2) {
final double L = pt2.getLongitude() - pt1.getLongitude();
final double U1 = Math.atan((1.0 - scaledFlattening) * Math.tan(pt1.getLatitude()));
final double U2 = Math.atan((1.0 - scaledFlattening) * Math.tan(pt2.getLatitude()));
final double sinU1 = Math.sin(U1);
final double cosU1 = Math.cos(U1);
final double sinU2 = Math.sin(U2);
final double cosU2 = Math.cos(U2);
final double dCosU1CosU2 = cosU1 * cosU2;
final double dCosU1SinU2 = cosU1 * sinU2;
final double dSinU1SinU2 = sinU1 * sinU2;
final double dSinU1CosU2 = sinU1 * cosU2;
double lambda = L;
double lambdaP = Math.PI * 2.0;
int iterLimit = 0;
double cosSqAlpha;
double sinSigma;
double cos2SigmaM;
double cosSigma;
double sigma;
double sinAlpha;
double C;
double sinLambda, cosLambda;
do {
sinLambda = Math.sin(lambda);
cosLambda = Math.cos(lambda);
sinSigma =
Math.sqrt(
(cosU2 * sinLambda) * (cosU2 * sinLambda)
+ (dCosU1SinU2 - dSinU1CosU2 * cosLambda)
* (dCosU1SinU2 - dSinU1CosU2 * cosLambda));
if (sinSigma == 0.0) {
return 0.0;
}
cosSigma = dSinU1SinU2 + dCosU1CosU2 * cosLambda;
sigma = Math.atan2(sinSigma, cosSigma);
sinAlpha = dCosU1CosU2 * sinLambda / sinSigma;
cosSqAlpha = 1.0 - sinAlpha * sinAlpha;
cos2SigmaM = cosSigma - 2.0 * dSinU1SinU2 / cosSqAlpha;
if (Double.isNaN(cos2SigmaM)) {
cos2SigmaM = 0.0; // equatorial line: cosSqAlpha=0
}
C =
scaledFlattening
/ 16.0
* cosSqAlpha
* (4.0 + scaledFlattening * (4.0 - 3.0 * cosSqAlpha));
lambdaP = lambda;
lambda =
L
+ (1.0 - C)
* scaledFlattening
* sinAlpha
* (sigma
+ C
* sinSigma
* (cos2SigmaM + C * cosSigma * (-1.0 + 2.0 * cos2SigmaM * cos2SigmaM)));
} while (Math.abs(lambda - lambdaP) >= Vector.MINIMUM_RESOLUTION && ++iterLimit < 100);
final double uSq = cosSqAlpha * this.squareRatio;
final double A = 1.0 + uSq / 16384.0 * (4096.0 + uSq * (-768.0 + uSq * (320.0 - 175.0 * uSq)));
final double B = uSq / 1024.0 * (256.0 + uSq * (-128.0 + uSq * (74.0 - 47.0 * uSq)));
final double deltaSigma =
B
* sinSigma
* (cos2SigmaM
+ B
/ 4.0
* (cosSigma * (-1.0 + 2.0 * cos2SigmaM * cos2SigmaM)
- B
/ 6.0
* cos2SigmaM
* (-3.0 + 4.0 * sinSigma * sinSigma)
* (-3.0 + 4.0 * cos2SigmaM * cos2SigmaM)));
return zScaling * inverseScale * A * (sigma - deltaSigma);
}
/**
* Compute new point given original point, a bearing direction, and an adjusted angle (as would be
* computed by the surfaceDistance() method above). The original point can be anywhere on the
* globe. The bearing direction ranges from 0 (due east at the equator) to pi/2 (due north) to pi
* (due west at the equator) to 3 pi/4 (due south) to 2 pi.
*
* @param from is the starting point.
* @param dist is the adjusted angle.
* @param bearing is the direction to proceed.
* @return the new point, consistent with the bearing direction and distance.
*/
public GeoPoint surfacePointOnBearing(
final GeoPoint from, final double dist, final double bearing) {
// Algorithm using Vincenty's formulae (https://en.wikipedia.org/wiki/Vincenty%27s_formulae)
// which takes into account that planets may not be spherical.
// Code adaptation from http://www.movable-type.co.uk/scripts/latlong-vincenty.html
double lat = from.getLatitude();
double lon = from.getLongitude();
double sinα1 = Math.sin(bearing);
double cosα1 = Math.cos(bearing);
double tanU1 = (1.0 - scaledFlattening) * Math.tan(lat);
double cosU1 = 1.0 / Math.sqrt((1.0 + tanU1 * tanU1));
double sinU1 = tanU1 * cosU1;
double σ1 = Math.atan2(tanU1, cosα1);
double sinα = cosU1 * sinα1;
double cosSqα = 1.0 - sinα * sinα;
double uSq = cosSqα * squareRatio;
double A = 1.0 + uSq / 16384.0 * (4096.0 + uSq * (-768.0 + uSq * (320.0 - 175.0 * uSq)));
double B = uSq / 1024.0 * (256.0 + uSq * (-128.0 + uSq * (74.0 - 47.0 * uSq)));
double cos2σM;
double sinσ;
double cosσ;
double Δσ;
double σ = dist / (zScaling * inverseScale * A);
double σʹ;
double iterations = 0;
do {
cos2σM = Math.cos(2.0 * σ1 + σ);
sinσ = Math.sin(σ);
cosσ = Math.cos(σ);
Δσ =
B
* sinσ
* (cos2σM
+ B
/ 4.0
* (cosσ * (-1.0 + 2.0 * cos2σM * cos2σM)
- B
/ 6.0
* cos2σM
* (-3.0 + 4.0 * sinσ * sinσ)
* (-3.0 + 4.0 * cos2σM * cos2σM)));
σʹ = σ;
σ = dist / (zScaling * inverseScale * A) + Δσ;
} while (Math.abs(σ - σʹ) >= Vector.MINIMUM_RESOLUTION && ++iterations < 100);
double x = sinU1 * sinσ - cosU1 * cosσ * cosα1;
double φ2 =
Math.atan2(
sinU1 * cosσ + cosU1 * sinσ * cosα1,
(1.0 - scaledFlattening) * Math.sqrt(sinα * sinα + x * x));
double λ = Math.atan2(sinσ * sinα1, cosU1 * cosσ - sinU1 * sinσ * cosα1);
double C = scaledFlattening / 16.0 * cosSqα * (4.0 + scaledFlattening * (4.0 - 3.0 * cosSqα));
double L =
λ
- (1.0 - C)
* scaledFlattening
* sinα
* (σ + C * sinσ * (cos2σM + C * cosσ * (-1.0 + 2.0 * cos2σM * cos2σM)));
double λ2 = (lon + L + 3.0 * Math.PI) % (2.0 * Math.PI) - Math.PI; // normalise to -180..+180
return new GeoPoint(this, φ2, λ2);
}
/**
* Utility class for encoding / decoding from lat/lon (decimal degrees) into sortable doc value
* numerics (integers)
*/
public static class DocValueEncoder {
private final PlanetModel planetModel;
// These are the multiplicative constants we need to use to arrive at values that fit in 21
// bits. The formula we use to go from double to encoded value is:
// Math.floor((value - minimum) * factor + 0.5)
// If we plug in maximum for value, we should get 0x1FFFFF.
// So, 0x1FFFFF = Math.floor((maximum - minimum) * factor + 0.5)
// We factor out the 0.5 and Math.floor by stating instead:
// 0x1FFFFF = (maximum - minimum) * factor
// So, factor = 0x1FFFFF / (maximum - minimum)
private static final double inverseMaximumValue = 1.0 / (double) (0x1FFFFF);
private final double inverseXFactor;
private final double inverseYFactor;
private final double inverseZFactor;
private final double xFactor;
private final double yFactor;
private final double zFactor;
// Fudge factor for step adjustments. This is here solely to handle inaccuracies in bounding
// boxes that occur because of quantization. For unknown reasons, the fudge factor needs to
// be 10.0 rather than 1.0. See LUCENE-7430.
private static final double STEP_FUDGE = 10.0;
// These values are the delta between a value and the next value in each specific dimension
private final double xStep;
private final double yStep;
private final double zStep;
/** construct an encoder/decoder instance from the provided PlanetModel definition */
private DocValueEncoder(final PlanetModel planetModel) {
this.planetModel = planetModel;
this.inverseXFactor =
(planetModel.getMaximumXValue() - planetModel.getMinimumXValue()) * inverseMaximumValue;
this.inverseYFactor =
(planetModel.getMaximumYValue() - planetModel.getMinimumYValue()) * inverseMaximumValue;
this.inverseZFactor =
(planetModel.getMaximumZValue() - planetModel.getMinimumZValue()) * inverseMaximumValue;
this.xFactor = 1.0 / inverseXFactor;
this.yFactor = 1.0 / inverseYFactor;
this.zFactor = 1.0 / inverseZFactor;
this.xStep = inverseXFactor * STEP_FUDGE;
this.yStep = inverseYFactor * STEP_FUDGE;
this.zStep = inverseZFactor * STEP_FUDGE;
}
/**
* Encode a point.
*
* @param point is the point
* @return the encoded long
*/
public long encodePoint(final GeoPoint point) {
return encodePoint(point.x, point.y, point.z);
}
/**
* Encode a point.
*
* @param x is the x value
* @param y is the y value
* @param z is the z value
* @return the encoded long
*/
public long encodePoint(final double x, final double y, final double z) {
int XEncoded = encodeX(x);
int YEncoded = encodeY(y);
int ZEncoded = encodeZ(z);
return (((long) (XEncoded & 0x1FFFFF)) << 42)
| (((long) (YEncoded & 0x1FFFFF)) << 21)
| ((long) (ZEncoded & 0x1FFFFF));
}
/**
* Decode GeoPoint value from long docvalues value.
*
* @param docValue is the doc values value.
* @return the GeoPoint.
*/
public GeoPoint decodePoint(final long docValue) {
return new GeoPoint(
decodeX(((int) (docValue >> 42)) & 0x1FFFFF),
decodeY(((int) (docValue >> 21)) & 0x1FFFFF),
decodeZ(((int) (docValue)) & 0x1FFFFF));
}
/**
* Decode X value from long docvalues value.
*
* @param docValue is the doc values value.
* @return the x value.
*/
public double decodeXValue(final long docValue) {
return decodeX(((int) (docValue >> 42)) & 0x1FFFFF);
}
/**
* Decode Y value from long docvalues value.
*
* @param docValue is the doc values value.
* @return the y value.
*/
public double decodeYValue(final long docValue) {
return decodeY(((int) (docValue >> 21)) & 0x1FFFFF);
}
/**
* Decode Z value from long docvalues value.
*
* @param docValue is the doc values value.
* @return the z value.
*/
public double decodeZValue(final long docValue) {
return decodeZ(((int) (docValue)) & 0x1FFFFF);
}
/**
* Round the provided X value down, by encoding it, decrementing it, and unencoding it.
*
* @param startValue is the starting value.
* @return the rounded value.
*/
public double roundDownX(final double startValue) {
return startValue - xStep;
}
/**
* Round the provided X value up, by encoding it, incrementing it, and unencoding it.
*
* @param startValue is the starting value.
* @return the rounded value.
*/
public double roundUpX(final double startValue) {
return startValue + xStep;
}
/**
* Round the provided Y value down, by encoding it, decrementing it, and unencoding it.
*
* @param startValue is the starting value.
* @return the rounded value.
*/
public double roundDownY(final double startValue) {
return startValue - yStep;
}
/**
* Round the provided Y value up, by encoding it, incrementing it, and unencoding it.
*
* @param startValue is the starting value.
* @return the rounded value.
*/
public double roundUpY(final double startValue) {
return startValue + yStep;
}
/**
* Round the provided Z value down, by encoding it, decrementing it, and unencoding it.
*
* @param startValue is the starting value.
* @return the rounded value.
*/
public double roundDownZ(final double startValue) {
return startValue - zStep;
}
/**
* Round the provided Z value up, by encoding it, incrementing it, and unencoding it.
*
* @param startValue is the starting value.
* @return the rounded value.
*/
public double roundUpZ(final double startValue) {
return startValue + zStep;
}
// For encoding/decoding, we generally want the following behavior:
// (1) If you encode the maximum value or the minimum value, the resulting int fits in 21 bits.
// (2) If you decode an encoded value, you get back the original value for both the minimum and
// maximum planet model values.
// (3) Rounding occurs such that a small delta from the minimum and maximum planet model values
// still returns the same values -- that is, these are in the center of the range of input
// values that should return the minimum or maximum when decoded
private int encodeX(final double x) {
if (x > planetModel.getMaximumXValue()) {
throw new IllegalArgumentException("x value exceeds planet model maximum");
} else if (x < planetModel.getMinimumXValue()) {
throw new IllegalArgumentException("x value less than planet model minimum");
}
return (int) Math.floor((x - planetModel.getMinimumXValue()) * xFactor + 0.5);
}
private double decodeX(final int x) {
return x * inverseXFactor + planetModel.getMinimumXValue();
}
private int encodeY(final double y) {
if (y > planetModel.getMaximumYValue()) {
throw new IllegalArgumentException("y value exceeds planet model maximum");
} else if (y < planetModel.getMinimumYValue()) {
throw new IllegalArgumentException("y value less than planet model minimum");
}
return (int) Math.floor((y - planetModel.getMinimumYValue()) * yFactor + 0.5);
}
private double decodeY(final int y) {
return y * inverseYFactor + planetModel.getMinimumYValue();
}
private int encodeZ(final double z) {
if (z > planetModel.getMaximumZValue()) {
throw new IllegalArgumentException("z value exceeds planet model maximum");
} else if (z < planetModel.getMinimumZValue()) {
throw new IllegalArgumentException("z value less than planet model minimum");
}
return (int) Math.floor((z - planetModel.getMinimumZValue()) * zFactor + 0.5);
}
private double decodeZ(final int z) {
return z * inverseZFactor + planetModel.getMinimumZValue();
}
}
@Override
public boolean equals(final Object o) {
if (!(o instanceof PlanetModel)) {
return false;
}
final PlanetModel other = (PlanetModel) o;
return a == other.a && b == other.b;
}
@Override
public int hashCode() {
return Double.hashCode(a) + Double.hashCode(b);
}
@Override
public String toString() {
if (this.equals(SPHERE)) {
return "PlanetModel.SPHERE";
} else if (this.equals(WGS84)) {
return "PlanetModel.WGS84";
} else if (this.equals(CLARKE_1866)) {
return "PlanetModel.CLARKE_1866";
} else {
return "PlanetModel(xyScaling=" + a + " zScaling=" + b + ")";
}
}
}