All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.lucene.search.suggest.analyzing.AnalyzingSuggester Maven / Gradle / Ivy

The newest version!
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.lucene.search.suggest.analyzing;

import static org.apache.lucene.util.automaton.Operations.DEFAULT_DETERMINIZE_WORK_LIMIT;

import java.io.IOException;
import java.util.ArrayList;
import java.util.Collection;
import java.util.Collections;
import java.util.Comparator;
import java.util.HashSet;
import java.util.List;
import java.util.Set;
import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.TokenStream;
import org.apache.lucene.analysis.TokenStreamToAutomaton;
import org.apache.lucene.codecs.CodecUtil;
import org.apache.lucene.search.suggest.InputIterator;
import org.apache.lucene.search.suggest.Lookup;
import org.apache.lucene.store.ByteArrayDataInput;
import org.apache.lucene.store.ByteArrayDataOutput;
import org.apache.lucene.store.DataInput;
import org.apache.lucene.store.DataOutput;
import org.apache.lucene.store.Directory;
import org.apache.lucene.store.IOContext;
import org.apache.lucene.store.IndexOutput;
import org.apache.lucene.util.Accountable;
import org.apache.lucene.util.Accountables;
import org.apache.lucene.util.ArrayUtil;
import org.apache.lucene.util.BytesRef;
import org.apache.lucene.util.BytesRefBuilder;
import org.apache.lucene.util.CharsRefBuilder;
import org.apache.lucene.util.IOUtils;
import org.apache.lucene.util.IntsRef;
import org.apache.lucene.util.IntsRefBuilder;
import org.apache.lucene.util.OfflineSorter;
import org.apache.lucene.util.automaton.Automaton;
import org.apache.lucene.util.automaton.LimitedFiniteStringsIterator;
import org.apache.lucene.util.automaton.Operations;
import org.apache.lucene.util.automaton.Transition;
import org.apache.lucene.util.fst.ByteSequenceOutputs;
import org.apache.lucene.util.fst.FST;
import org.apache.lucene.util.fst.FST.BytesReader;
import org.apache.lucene.util.fst.FSTCompiler;
import org.apache.lucene.util.fst.PairOutputs;
import org.apache.lucene.util.fst.PairOutputs.Pair;
import org.apache.lucene.util.fst.PositiveIntOutputs;
import org.apache.lucene.util.fst.Util;
import org.apache.lucene.util.fst.Util.Result;
import org.apache.lucene.util.fst.Util.TopResults;

/**
 * Suggester that first analyzes the surface form, adds the analyzed form to a weighted FST, and
 * then does the same thing at lookup time. This means lookup is based on the analyzed form while
 * suggestions are still the surface form(s).
 *
 * 

This can result in powerful suggester functionality. For example, if you use an analyzer * removing stop words, then the partial text "ghost chr..." could see the suggestion "The Ghost of * Christmas Past". Note that position increments MUST NOT be preserved for this example to work, so * you should call the constructor with preservePositionIncrements parameter set to * false * *

If SynonymFilter is used to map wifi and wireless network to hotspot then the partial text * "wirele..." could suggest "wifi router". Token normalization like stemmers, accent removal, etc., * would allow suggestions to ignore such variations. * *

When two matching suggestions have the same weight, they are tie-broken by the analyzed form. * If their analyzed form is the same then the order is undefined. * *

There are some limitations: * *

    *
  • A lookup from a query like "net" in English won't be any different than "net " (ie, user * added a trailing space) because analyzers don't reflect when they've seen a token separator * and when they haven't. *
  • If you're using {@code StopFilter}, and the user will type "fast apple", but so far all * they've typed is "fast a", again because the analyzer doesn't convey whether it's seen a * token separator after the "a", {@code StopFilter} will remove that "a" causing far more * matches than you'd expect. *
  • Lookups with the empty string return no results instead of all results. *
* * @lucene.experimental */ public class AnalyzingSuggester extends Lookup { /** * FST<Weight,Surface>: input is the analyzed form, with a null byte between terms weights * are encoded as costs: (Integer.MAX_VALUE-weight) surface is the original, unanalyzed form. */ private FST> fst = null; /** Analyzer that will be used for analyzing suggestions at index time. */ private final Analyzer indexAnalyzer; /** Analyzer that will be used for analyzing suggestions at query time. */ private final Analyzer queryAnalyzer; /** True if exact match suggestions should always be returned first. */ private final boolean exactFirst; /** True if separator between tokens should be preserved. */ private final boolean preserveSep; /** * Include this flag in the options parameter to {@link * #AnalyzingSuggester(Directory,String,Analyzer,Analyzer,int,int,int,boolean)} to always return * the exact match first, regardless of score. This has no performance impact but could result in * low-quality suggestions. */ public static final int EXACT_FIRST = 1; /** * Include this flag in the options parameter to {@link * #AnalyzingSuggester(Directory,String,Analyzer,Analyzer,int,int,int,boolean)} to preserve token * separators when matching. */ public static final int PRESERVE_SEP = 2; /** Represents the separation between tokens, if PRESERVE_SEP was specified */ private static final int SEP_LABEL = '\u001F'; /** Marks end of the analyzed input and start of dedup byte. */ private static final int END_BYTE = 0x0; /** Maximum number of dup surface forms (different surface forms for the same analyzed form). */ private final int maxSurfaceFormsPerAnalyzedForm; /** * Maximum graph paths to index for a single analyzed surface form. This only matters if your * analyzer makes lots of alternate paths (e.g. contains SynonymFilter). */ private final int maxGraphExpansions; private final Directory tempDir; private final String tempFileNamePrefix; /** * Highest number of analyzed paths we saw for any single input surface form. For analyzers that * never create graphs this will always be 1. */ private int maxAnalyzedPathsForOneInput; private boolean hasPayloads; private static final int PAYLOAD_SEP = '\u001f'; /** Whether position holes should appear in the automaton. */ private boolean preservePositionIncrements; /** Number of entries the lookup was built with */ private volatile long count = 0; /** * Calls {@link #AnalyzingSuggester(Directory,String,Analyzer,Analyzer,int,int,int,boolean) * AnalyzingSuggester(analyzer, analyzer, EXACT_FIRST | PRESERVE_SEP, 256, -1, true)} */ public AnalyzingSuggester(Directory tempDir, String tempFileNamePrefix, Analyzer analyzer) { this( tempDir, tempFileNamePrefix, analyzer, analyzer, EXACT_FIRST | PRESERVE_SEP, 256, -1, true); } /** * Calls {@link #AnalyzingSuggester(Directory,String,Analyzer,Analyzer,int,int,int,boolean) * AnalyzingSuggester(indexAnalyzer, queryAnalyzer, EXACT_FIRST | PRESERVE_SEP, 256, -1, true)} */ public AnalyzingSuggester( Directory tempDir, String tempFileNamePrefix, Analyzer indexAnalyzer, Analyzer queryAnalyzer) { this( tempDir, tempFileNamePrefix, indexAnalyzer, queryAnalyzer, EXACT_FIRST | PRESERVE_SEP, 256, -1, true); } /** * Creates a new suggester. * * @param indexAnalyzer Analyzer that will be used for analyzing suggestions while building the * index. * @param queryAnalyzer Analyzer that will be used for analyzing query text during lookup * @param options see {@link #EXACT_FIRST}, {@link #PRESERVE_SEP} * @param maxSurfaceFormsPerAnalyzedForm Maximum number of surface forms to keep for a single * analyzed form. When there are too many surface forms we discard the lowest weighted ones. * @param maxGraphExpansions Maximum number of graph paths to expand from the analyzed form. Set * this to -1 for no limit. * @param preservePositionIncrements Whether position holes should appear in the automata */ public AnalyzingSuggester( Directory tempDir, String tempFileNamePrefix, Analyzer indexAnalyzer, Analyzer queryAnalyzer, int options, int maxSurfaceFormsPerAnalyzedForm, int maxGraphExpansions, boolean preservePositionIncrements) { this.indexAnalyzer = indexAnalyzer; this.queryAnalyzer = queryAnalyzer; if ((options & ~(EXACT_FIRST | PRESERVE_SEP)) != 0) { throw new IllegalArgumentException( "options should only contain EXACT_FIRST and PRESERVE_SEP; got " + options); } this.exactFirst = (options & EXACT_FIRST) != 0; this.preserveSep = (options & PRESERVE_SEP) != 0; // NOTE: this is just an implementation limitation; if // somehow this is a problem we could fix it by using // more than one byte to disambiguate ... but 256 seems // like it should be way more then enough. if (maxSurfaceFormsPerAnalyzedForm <= 0 || maxSurfaceFormsPerAnalyzedForm > 256) { throw new IllegalArgumentException( "maxSurfaceFormsPerAnalyzedForm must be > 0 and < 256 (got: " + maxSurfaceFormsPerAnalyzedForm + ")"); } this.maxSurfaceFormsPerAnalyzedForm = maxSurfaceFormsPerAnalyzedForm; if (maxGraphExpansions < 1 && maxGraphExpansions != -1) { throw new IllegalArgumentException( "maxGraphExpansions must -1 (no limit) or > 0 (got: " + maxGraphExpansions + ")"); } this.maxGraphExpansions = maxGraphExpansions; this.preservePositionIncrements = preservePositionIncrements; this.tempDir = tempDir; this.tempFileNamePrefix = tempFileNamePrefix; } /** Returns byte size of the underlying FST. */ @Override public long ramBytesUsed() { return fst == null ? 0 : fst.ramBytesUsed(); } @Override public Collection getChildResources() { if (fst == null) { return Collections.emptyList(); } else { return Collections.singletonList(Accountables.namedAccountable("fst", fst)); } } // Replaces SEP with epsilon or remaps them if // we were asked to preserve them: private Automaton replaceSep(Automaton a) { int numStates = a.getNumStates(); Automaton.Builder result = new Automaton.Builder(numStates, a.getNumTransitions()); // Copy all states over result.copyStates(a); // Go in reverse topo sort so we know we only have to // make one pass: Transition t = new Transition(); int[] topoSortStates = Operations.topoSortStates(a); for (int i = 0; i < topoSortStates.length; i++) { int state = topoSortStates[topoSortStates.length - 1 - i]; int count = a.initTransition(state, t); for (int j = 0; j < count; j++) { a.getNextTransition(t); if (t.min == TokenStreamToAutomaton.POS_SEP) { assert t.max == TokenStreamToAutomaton.POS_SEP; if (preserveSep) { // Remap to SEP_LABEL: result.addTransition(state, t.dest, SEP_LABEL); } else { result.addEpsilon(state, t.dest); } } else if (t.min == TokenStreamToAutomaton.HOLE) { assert t.max == TokenStreamToAutomaton.HOLE; // Just remove the hole: there will then be two // SEP tokens next to each other, which will only // match another hole at search time. Note that // it will also match an empty-string token ... if // that's somehow a problem we can always map HOLE // to a dedicated byte (and escape it in the // input). result.addEpsilon(state, t.dest); } else { result.addTransition(state, t.dest, t.min, t.max); } } } return result.finish(); } /** Used by subclass to change the lookup automaton, if necessary. */ protected Automaton convertAutomaton(Automaton a) { return a; } TokenStreamToAutomaton getTokenStreamToAutomaton() { final TokenStreamToAutomaton tsta = new TokenStreamToAutomaton(); tsta.setPreservePositionIncrements(preservePositionIncrements); tsta.setFinalOffsetGapAsHole(true); return tsta; } private static class AnalyzingComparator implements Comparator { private final boolean hasPayloads; public AnalyzingComparator(boolean hasPayloads) { this.hasPayloads = hasPayloads; } private final ByteArrayDataInput readerA = new ByteArrayDataInput(); private final ByteArrayDataInput readerB = new ByteArrayDataInput(); private final BytesRef scratchA = new BytesRef(); private final BytesRef scratchB = new BytesRef(); @Override public int compare(BytesRef a, BytesRef b) { // First by analyzed form: readerA.reset(a.bytes, a.offset, a.length); scratchA.length = readerA.readShort(); scratchA.bytes = a.bytes; scratchA.offset = readerA.getPosition(); readerB.reset(b.bytes, b.offset, b.length); scratchB.bytes = b.bytes; scratchB.length = readerB.readShort(); scratchB.offset = readerB.getPosition(); int cmp = scratchA.compareTo(scratchB); if (cmp != 0) { return cmp; } readerA.skipBytes(scratchA.length); readerB.skipBytes(scratchB.length); // Next by cost: long aCost = readerA.readInt(); long bCost = readerB.readInt(); assert decodeWeight(aCost) >= 0; assert decodeWeight(bCost) >= 0; if (aCost < bCost) { return -1; } else if (aCost > bCost) { return 1; } // Finally by surface form: if (hasPayloads) { scratchA.length = readerA.readShort(); scratchB.length = readerB.readShort(); scratchA.offset = readerA.getPosition(); scratchB.offset = readerB.getPosition(); } else { scratchA.offset = readerA.getPosition(); scratchB.offset = readerB.getPosition(); scratchA.length = readerA.length() - readerA.getPosition(); scratchB.length = readerB.length() - readerB.getPosition(); } assert scratchA.isValid(); assert scratchB.isValid(); return scratchA.compareTo(scratchB); } } @Override public void build(InputIterator iterator) throws IOException { if (iterator.hasContexts()) { throw new IllegalArgumentException("this suggester doesn't support contexts"); } hasPayloads = iterator.hasPayloads(); OfflineSorter sorter = new OfflineSorter(tempDir, tempFileNamePrefix, new AnalyzingComparator(hasPayloads)); IndexOutput tempInput = tempDir.createTempOutput(tempFileNamePrefix, "input", IOContext.DEFAULT); OfflineSorter.ByteSequencesWriter writer = new OfflineSorter.ByteSequencesWriter(tempInput); OfflineSorter.ByteSequencesReader reader = null; BytesRefBuilder scratch = new BytesRefBuilder(); TokenStreamToAutomaton ts2a = getTokenStreamToAutomaton(); String tempSortedFileName = null; long newCount = 0; byte[] buffer = new byte[8]; try { ByteArrayDataOutput output = new ByteArrayDataOutput(buffer); for (BytesRef surfaceForm; (surfaceForm = iterator.next()) != null; ) { LimitedFiniteStringsIterator finiteStrings = new LimitedFiniteStringsIterator(toAutomaton(surfaceForm, ts2a), maxGraphExpansions); for (IntsRef string; (string = finiteStrings.next()) != null; newCount++) { Util.toBytesRef(string, scratch); // length of the analyzed text (FST input) if (scratch.length() > Short.MAX_VALUE - 2) { throw new IllegalArgumentException( "cannot handle analyzed forms > " + (Short.MAX_VALUE - 2) + " in length (got " + scratch.length() + ")"); } short analyzedLength = (short) scratch.length(); // compute the required length: // analyzed sequence + weight (4) + surface + analyzedLength (short) int requiredLength = analyzedLength + 4 + surfaceForm.length + 2; BytesRef payload; if (hasPayloads) { if (surfaceForm.length > (Short.MAX_VALUE - 2)) { throw new IllegalArgumentException( "cannot handle surface form > " + (Short.MAX_VALUE - 2) + " in length (got " + surfaceForm.length + ")"); } payload = iterator.payload(); // payload + surfaceLength (short) requiredLength += payload.length + 2; } else { payload = null; } buffer = ArrayUtil.growNoCopy(buffer, requiredLength); output.reset(buffer); output.writeShort(analyzedLength); output.writeBytes(scratch.bytes(), 0, scratch.length()); output.writeInt(encodeWeight(iterator.weight())); if (hasPayloads) { for (int i = 0; i < surfaceForm.length; i++) { if (surfaceForm.bytes[i] == PAYLOAD_SEP) { throw new IllegalArgumentException( "surface form cannot contain unit separator character U+001F; this character is reserved"); } } output.writeShort((short) surfaceForm.length); output.writeBytes(surfaceForm.bytes, surfaceForm.offset, surfaceForm.length); output.writeBytes(payload.bytes, payload.offset, payload.length); } else { output.writeBytes(surfaceForm.bytes, surfaceForm.offset, surfaceForm.length); } assert output.getPosition() == requiredLength : output.getPosition() + " vs " + requiredLength; writer.write(buffer, 0, output.getPosition()); } maxAnalyzedPathsForOneInput = Math.max(maxAnalyzedPathsForOneInput, finiteStrings.size()); } CodecUtil.writeFooter(tempInput); writer.close(); // Sort all input/output pairs (required by FST.Builder): tempSortedFileName = sorter.sort(tempInput.getName()); // Free disk space: tempDir.deleteFile(tempInput.getName()); reader = new OfflineSorter.ByteSequencesReader( tempDir.openChecksumInput(tempSortedFileName), tempSortedFileName); PairOutputs outputs = new PairOutputs<>(PositiveIntOutputs.getSingleton(), ByteSequenceOutputs.getSingleton()); FSTCompiler> fstCompiler = new FSTCompiler.Builder<>(FST.INPUT_TYPE.BYTE1, outputs).build(); // Build FST: BytesRefBuilder previousAnalyzed = null; BytesRefBuilder analyzed = new BytesRefBuilder(); BytesRef surface = new BytesRef(); IntsRefBuilder scratchInts = new IntsRefBuilder(); ByteArrayDataInput input = new ByteArrayDataInput(); // Used to remove duplicate surface forms (but we // still index the hightest-weight one). We clear // this when we see a new analyzed form, so it cannot // grow unbounded (at most 256 entries): Set seenSurfaceForms = new HashSet<>(); int dedup = 0; while (true) { BytesRef bytes = reader.next(); if (bytes == null) { break; } input.reset(bytes.bytes, bytes.offset, bytes.length); short analyzedLength = input.readShort(); analyzed.growNoCopy(analyzedLength + 2); input.readBytes(analyzed.bytes(), 0, analyzedLength); analyzed.setLength(analyzedLength); long cost = input.readInt(); surface.bytes = bytes.bytes; if (hasPayloads) { surface.length = input.readShort(); surface.offset = input.getPosition(); } else { surface.offset = input.getPosition(); surface.length = bytes.length - surface.offset; } if (previousAnalyzed == null) { previousAnalyzed = new BytesRefBuilder(); previousAnalyzed.copyBytes(analyzed.get()); seenSurfaceForms.add(BytesRef.deepCopyOf(surface)); } else if (analyzed.get().equals(previousAnalyzed.get())) { dedup++; if (dedup >= maxSurfaceFormsPerAnalyzedForm) { // More than maxSurfaceFormsPerAnalyzedForm // dups: skip the rest: continue; } if (seenSurfaceForms.contains(surface)) { continue; } seenSurfaceForms.add(BytesRef.deepCopyOf(surface)); } else { dedup = 0; previousAnalyzed.copyBytes(analyzed); seenSurfaceForms.clear(); seenSurfaceForms.add(BytesRef.deepCopyOf(surface)); } // TODO: I think we can avoid the extra 2 bytes when // there is no dup (dedup==0), but we'd have to fix // the exactFirst logic ... which would be sort of // hairy because we'd need to special case the two // (dup/not dup)... // NOTE: must be byte 0 so we sort before whatever // is next analyzed.append((byte) 0); analyzed.append((byte) dedup); Util.toIntsRef(analyzed.get(), scratchInts); // System.out.println("ADD: " + scratchInts + " -> " + cost + ": " + // surface.utf8ToString()); if (!hasPayloads) { fstCompiler.add(scratchInts.get(), outputs.newPair(cost, BytesRef.deepCopyOf(surface))); } else { int payloadOffset = input.getPosition() + surface.length; int payloadLength = bytes.length - payloadOffset; BytesRef br = new BytesRef(surface.length + 1 + payloadLength); System.arraycopy(surface.bytes, surface.offset, br.bytes, 0, surface.length); br.bytes[surface.length] = PAYLOAD_SEP; System.arraycopy(bytes.bytes, payloadOffset, br.bytes, surface.length + 1, payloadLength); br.length = br.bytes.length; fstCompiler.add(scratchInts.get(), outputs.newPair(cost, br)); } } fst = FST.fromFSTReader(fstCompiler.compile(), fstCompiler.getFSTReader()); count = newCount; // Util.dotToFile(fst, "/tmp/suggest.dot"); } finally { IOUtils.closeWhileHandlingException(reader, writer); IOUtils.deleteFilesIgnoringExceptions(tempDir, tempInput.getName(), tempSortedFileName); } } @Override public boolean store(DataOutput output) throws IOException { output.writeVLong(count); if (fst == null) { return false; } fst.save(output, output); output.writeVInt(maxAnalyzedPathsForOneInput); output.writeByte((byte) (hasPayloads ? 1 : 0)); return true; } @Override public boolean load(DataInput input) throws IOException { count = input.readVLong(); PairOutputs outputs = new PairOutputs<>(PositiveIntOutputs.getSingleton(), ByteSequenceOutputs.getSingleton()); this.fst = new FST<>(FST.readMetadata(input, outputs), input); maxAnalyzedPathsForOneInput = input.readVInt(); hasPayloads = input.readByte() == 1; return true; } private LookupResult getLookupResult(Long output1, BytesRef output2, CharsRefBuilder spare) { LookupResult result; if (hasPayloads) { int sepIndex = -1; for (int i = 0; i < output2.length; i++) { if (output2.bytes[output2.offset + i] == PAYLOAD_SEP) { sepIndex = i; break; } } assert sepIndex != -1; spare.grow(sepIndex); final int payloadLen = output2.length - sepIndex - 1; spare.copyUTF8Bytes(output2.bytes, output2.offset, sepIndex); BytesRef payload = new BytesRef(payloadLen); System.arraycopy(output2.bytes, sepIndex + 1, payload.bytes, 0, payloadLen); payload.length = payloadLen; result = new LookupResult(spare.toString(), decodeWeight(output1), payload); } else { spare.grow(output2.length); spare.copyUTF8Bytes(output2); result = new LookupResult(spare.toString(), decodeWeight(output1)); } return result; } private boolean sameSurfaceForm(BytesRef key, BytesRef output2) { if (hasPayloads) { // output2 has at least PAYLOAD_SEP byte: if (key.length >= output2.length) { return false; } for (int i = 0; i < key.length; i++) { if (key.bytes[key.offset + i] != output2.bytes[output2.offset + i]) { return false; } } return output2.bytes[output2.offset + key.length] == PAYLOAD_SEP; } else { return key.bytesEquals(output2); } } @Override public List lookup( final CharSequence key, Set contexts, boolean onlyMorePopular, int num) { assert num > 0; if (onlyMorePopular) { throw new IllegalArgumentException("this suggester only works with onlyMorePopular=false"); } if (contexts != null) { throw new IllegalArgumentException("this suggester doesn't support contexts"); } if (fst == null) { return Collections.emptyList(); } // System.out.println("lookup key=" + key + " num=" + num); for (int i = 0; i < key.length(); i++) { if (key.charAt(i) == 0x1E) { throw new IllegalArgumentException( "lookup key cannot contain HOLE character U+001E; this character is reserved"); } if (key.charAt(i) == 0x1F) { throw new IllegalArgumentException( "lookup key cannot contain unit separator character U+001F; this character is reserved"); } } final BytesRef utf8Key = new BytesRef(key); try { Automaton lookupAutomaton = toLookupAutomaton(key); final CharsRefBuilder spare = new CharsRefBuilder(); // System.out.println(" now intersect exactFirst=" + exactFirst); // Intersect automaton w/ suggest wFST and get all // prefix starting nodes & their outputs: // final PathIntersector intersector = getPathIntersector(lookupAutomaton, fst); // System.out.println(" prefixPaths: " + prefixPaths.size()); BytesReader bytesReader = fst.getBytesReader(); FST.Arc> scratchArc = new FST.Arc<>(); final List results = new ArrayList<>(); List>> prefixPaths = FSTUtil.intersectPrefixPaths(convertAutomaton(lookupAutomaton), fst); if (exactFirst) { int count = 0; for (FSTUtil.Path> path : prefixPaths) { if (fst.findTargetArc(END_BYTE, path.fstNode(), scratchArc, bytesReader) != null) { // This node has END_BYTE arc leaving, meaning it's an // "exact" match: count++; } } // Searcher just to find the single exact only // match, if present: Util.TopNSearcher> searcher; searcher = new Util.TopNSearcher<>( fst, count * maxSurfaceFormsPerAnalyzedForm, count * maxSurfaceFormsPerAnalyzedForm, weightComparator); // NOTE: we could almost get away with only using // the first start node. The only catch is if // maxSurfaceFormsPerAnalyzedForm had kicked in and // pruned our exact match from one of these nodes // ...: for (FSTUtil.Path> path : prefixPaths) { if (fst.findTargetArc(END_BYTE, path.fstNode(), scratchArc, bytesReader) != null) { // This node has END_BYTE arc leaving, meaning it's an // "exact" match: searcher.addStartPaths( scratchArc, fst.outputs.add(path.output(), scratchArc.output()), false, path.input()); } } TopResults> completions = searcher.search(); assert completions.isComplete; // NOTE: this is rather inefficient: we enumerate // every matching "exactly the same analyzed form" // path, and then do linear scan to see if one of // these exactly matches the input. It should be // possible (though hairy) to do something similar // to getByOutput, since the surface form is encoded // into the FST output, so we more efficiently hone // in on the exact surface-form match. Still, I // suspect very little time is spent in this linear // seach: it's bounded by how many prefix start // nodes we have and the // maxSurfaceFormsPerAnalyzedForm: for (Result> completion : completions) { BytesRef output2 = completion.output().output2; if (sameSurfaceForm(utf8Key, output2)) { results.add(getLookupResult(completion.output().output1, output2, spare)); break; } } if (results.size() == num) { // That was quick: return results; } } Util.TopNSearcher> searcher; searcher = new Util.TopNSearcher>( fst, num - results.size(), num * maxAnalyzedPathsForOneInput, weightComparator) { private final Set seen = new HashSet<>(); @Override protected boolean acceptResult(IntsRef input, Pair output) { // Dedup: when the input analyzes to a graph we // can get duplicate surface forms: if (seen.contains(output.output2)) { return false; } seen.add(output.output2); if (!exactFirst) { return true; } else { // In exactFirst mode, don't accept any paths // matching the surface form since that will // create duplicate results: if (sameSurfaceForm(utf8Key, output.output2)) { // We found exact match, which means we should // have already found it in the first search: assert results.size() == 1; return false; } else { return true; } } } }; prefixPaths = getFullPrefixPaths(prefixPaths, lookupAutomaton, fst); for (FSTUtil.Path> path : prefixPaths) { searcher.addStartPaths(path.fstNode(), path.output(), true, path.input()); } TopResults> completions = searcher.search(); assert completions.isComplete; for (Result> completion : completions) { LookupResult result = getLookupResult(completion.output().output1, completion.output().output2, spare); // TODO: for fuzzy case would be nice to return // how many edits were required // System.out.println(" result=" + result); results.add(result); if (results.size() == num) { // In the exactFirst=true case the search may // produce one extra path break; } } return results; } catch (IOException bogus) { throw new RuntimeException(bogus); } } @Override public long getCount() { return count; } /** Returns all prefix paths to initialize the search. */ protected List>> getFullPrefixPaths( List>> prefixPaths, Automaton lookupAutomaton, FST> fst) throws IOException { return prefixPaths; } final Automaton toAutomaton(final BytesRef surfaceForm, final TokenStreamToAutomaton ts2a) throws IOException { // Analyze surface form: Automaton automaton; try (TokenStream ts = indexAnalyzer.tokenStream("", surfaceForm.utf8ToString())) { // Create corresponding automaton: labels are bytes // from each analyzed token, with byte 0 used as // separator between tokens: automaton = ts2a.toAutomaton(ts); } automaton = replaceSep(automaton); automaton = convertAutomaton(automaton); // Get all paths from the automaton (there can be // more than one path, eg if the analyzer created a // graph using SynFilter or WDF): return automaton; } final Automaton toLookupAutomaton(final CharSequence key) throws IOException { // TODO: is there a Reader from a CharSequence? // Turn tokenstream into automaton: Automaton automaton = null; try (TokenStream ts = queryAnalyzer.tokenStream("", key.toString())) { automaton = getTokenStreamToAutomaton().toAutomaton(ts); } automaton = replaceSep(automaton); // TODO: we can optimize this somewhat by determinizing // while we convert automaton = Operations.determinize(automaton, DEFAULT_DETERMINIZE_WORK_LIMIT); return automaton; } /** Returns the weight associated with an input string, or null if it does not exist. */ public Object get(CharSequence key) { throw new UnsupportedOperationException(); } /** cost -> weight */ private static int decodeWeight(long encoded) { return (int) (Integer.MAX_VALUE - encoded); } /** weight -> cost */ private static int encodeWeight(long value) { if (value < 0 || value > Integer.MAX_VALUE) { throw new UnsupportedOperationException("cannot encode value: " + value); } return Integer.MAX_VALUE - (int) value; } static final Comparator> weightComparator = new Comparator>() { @Override public int compare(Pair left, Pair right) { return left.output1.compareTo(right.output1); } }; }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy