All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.lucene.wordnet.AnalyzerUtil Maven / Gradle / Ivy

package org.apache.lucene.wordnet;

/**
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

import java.io.IOException;
import java.io.PrintStream;
import java.io.Reader;
import java.io.StringReader;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Comparator;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;
import java.util.regex.Pattern;

import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.PorterStemFilter;
import org.apache.lucene.analysis.TokenFilter;
import org.apache.lucene.analysis.TokenStream;
import org.apache.lucene.analysis.tokenattributes.OffsetAttribute;
import org.apache.lucene.analysis.tokenattributes.PositionIncrementAttribute;
import org.apache.lucene.analysis.tokenattributes.TermAttribute;
import org.apache.lucene.analysis.tokenattributes.TypeAttribute;
import org.apache.lucene.util.AttributeSource;

/**
 * Various fulltext analysis utilities avoiding redundant code in several
 * classes.
 *
 */
public class AnalyzerUtil {
  
  private AnalyzerUtil() {}

  /**
   * Returns a simple analyzer wrapper that logs all tokens produced by the
   * underlying child analyzer to the given log stream (typically System.err);
   * Otherwise behaves exactly like the child analyzer, delivering the very
   * same tokens; useful for debugging purposes on custom indexing and/or
   * querying.
   * 
   * @param child
   *            the underlying child analyzer
   * @param log
   *            the print stream to log to (typically System.err)
   * @param logName
   *            a name for this logger (typically "log" or similar)
   * @return a logging analyzer
   */
  public static Analyzer getLoggingAnalyzer(final Analyzer child, 
      final PrintStream log, final String logName) {
    
    if (child == null) 
      throw new IllegalArgumentException("child analyzer must not be null");
    if (log == null) 
      throw new IllegalArgumentException("logStream must not be null");

    return new Analyzer() {
      @Override
      public TokenStream tokenStream(final String fieldName, Reader reader) {
        return new TokenFilter(child.tokenStream(fieldName, reader)) {
          private int position = -1;
          private TermAttribute termAtt = addAttribute(TermAttribute.class);
          private PositionIncrementAttribute posIncrAtt = addAttribute(PositionIncrementAttribute.class);
          private OffsetAttribute offsetAtt = addAttribute(OffsetAttribute.class);
          private TypeAttribute typeAtt = addAttribute(TypeAttribute.class);
         
          @Override
          public boolean incrementToken() throws IOException {
            boolean hasNext = input.incrementToken();
            log.println(toString(hasNext));
            return hasNext;
          }
          
          private String toString(boolean hasNext) {
            if (!hasNext) return "[" + logName + ":EOS:" + fieldName + "]\n";
            
            position += posIncrAtt.getPositionIncrement();
            return "[" + logName + ":" + position + ":" + fieldName + ":"
                + termAtt.term() + ":" + offsetAtt.startOffset()
                + "-" + offsetAtt.endOffset() + ":" + typeAtt.type()
                + "]";
          }         
        };
      }
    };
  }
  
  
  /**
   * Returns an analyzer wrapper that returns at most the first
   * maxTokens tokens from the underlying child analyzer,
   * ignoring all remaining tokens.
   * 
   * @param child
   *            the underlying child analyzer
   * @param maxTokens
   *            the maximum number of tokens to return from the underlying
   *            analyzer (a value of Integer.MAX_VALUE indicates unlimited)
   * @return an analyzer wrapper
   */
  public static Analyzer getMaxTokenAnalyzer(
      final Analyzer child, final int maxTokens) {
    
    if (child == null) 
      throw new IllegalArgumentException("child analyzer must not be null");
    if (maxTokens < 0) 
      throw new IllegalArgumentException("maxTokens must not be negative");
    if (maxTokens == Integer.MAX_VALUE) 
      return child; // no need to wrap
  
    return new Analyzer() {
      @Override
      public TokenStream tokenStream(String fieldName, Reader reader) {
        return new TokenFilter(child.tokenStream(fieldName, reader)) {
          private int todo = maxTokens;
          
          @Override
          public boolean incrementToken() throws IOException {
            return --todo >= 0 ? input.incrementToken() : false;
          }
        };
      }
    };
  }
  
  
  /**
   * Returns an English stemming analyzer that stems tokens from the
   * underlying child analyzer according to the Porter stemming algorithm. The
   * child analyzer must deliver tokens in lower case for the stemmer to work
   * properly.
   * 

* Background: Stemming reduces token terms to their linguistic root form * e.g. reduces "fishing" and "fishes" to "fish", "family" and "families" to * "famili", as well as "complete" and "completion" to "complet". Note that * the root form is not necessarily a meaningful word in itself, and that * this is not a bug but rather a feature, if you lean back and think about * fuzzy word matching for a bit. *

* See the Lucene contrib packages for stemmers (and stop words) for German, * Russian and many more languages. * * @param child * the underlying child analyzer * @return an analyzer wrapper */ public static Analyzer getPorterStemmerAnalyzer(final Analyzer child) { if (child == null) throw new IllegalArgumentException("child analyzer must not be null"); return new Analyzer() { @Override public TokenStream tokenStream(String fieldName, Reader reader) { return new PorterStemFilter( child.tokenStream(fieldName, reader)); // /* PorterStemFilter and SnowballFilter have the same behaviour, // but PorterStemFilter is much faster. */ // return new org.apache.lucene.analysis.snowball.SnowballFilter( // child.tokenStream(fieldName, reader), "English"); } }; } /** * Returns an analyzer wrapper that wraps the underlying child analyzer's * token stream into a {@link SynonymTokenFilter}. * * @param child * the underlying child analyzer * @param synonyms * the map used to extract synonyms for terms * @param maxSynonyms * the maximum number of synonym tokens to return per underlying * token word (a value of Integer.MAX_VALUE indicates unlimited) * @return a new analyzer */ public static Analyzer getSynonymAnalyzer(final Analyzer child, final SynonymMap synonyms, final int maxSynonyms) { if (child == null) throw new IllegalArgumentException("child analyzer must not be null"); if (synonyms == null) throw new IllegalArgumentException("synonyms must not be null"); if (maxSynonyms < 0) throw new IllegalArgumentException("maxSynonyms must not be negative"); if (maxSynonyms == 0) return child; // no need to wrap return new Analyzer() { @Override public TokenStream tokenStream(String fieldName, Reader reader) { return new SynonymTokenFilter( child.tokenStream(fieldName, reader), synonyms, maxSynonyms); } }; } /** * Returns an analyzer wrapper that caches all tokens generated by the underlying child analyzer's * token streams, and delivers those cached tokens on subsequent calls to * tokenStream(String fieldName, Reader reader) * if the fieldName has been seen before, altogether ignoring the Reader parameter on cache lookup. *

* If Analyzer / TokenFilter chains are expensive in terms of I/O or CPU, such caching can * help improve performance if the same document is added to multiple Lucene indexes, * because the text analysis phase need not be performed more than once. *

* Caveats: *

    *
  • Caching the tokens of large Lucene documents can lead to out of memory exceptions.
  • *
  • The Token instances delivered by the underlying child analyzer must be immutable.
  • *
  • The same caching analyzer instance must not be used for more than one document * because the cache is not keyed on the Reader parameter.
  • *
* * @param child * the underlying child analyzer * @return a new analyzer */ public static Analyzer getTokenCachingAnalyzer(final Analyzer child) { if (child == null) throw new IllegalArgumentException("child analyzer must not be null"); return new Analyzer() { private final HashMap> cache = new HashMap>(); @Override public TokenStream tokenStream(String fieldName, Reader reader) { final ArrayList tokens = cache.get(fieldName); if (tokens == null) { // not yet cached final ArrayList tokens2 = new ArrayList(); TokenStream tokenStream = new TokenFilter(child.tokenStream(fieldName, reader)) { @Override public boolean incrementToken() throws IOException { boolean hasNext = input.incrementToken(); if (hasNext) tokens2.add(captureState()); return hasNext; } }; cache.put(fieldName, tokens2); return tokenStream; } else { // already cached return new TokenStream() { private Iterator iter = tokens.iterator(); @Override public boolean incrementToken() { if (!iter.hasNext()) return false; restoreState(iter.next()); return true; } }; } } }; } /** * Returns (frequency:term) pairs for the top N distinct terms (aka words), * sorted descending by frequency (and ascending by term, if tied). *

* Example XQuery: *

   * declare namespace util = "java:org.apache.lucene.index.memory.AnalyzerUtil";
   * declare namespace analyzer = "java:org.apache.lucene.index.memory.PatternAnalyzer";
   * 
   * for $pair in util:get-most-frequent-terms(
   *    analyzer:EXTENDED_ANALYZER(), doc("samples/shakespeare/othello.xml"), 10)
   * return <word word="{substring-after($pair, ':')}" frequency="{substring-before($pair, ':')}"/>
   * 
* * @param analyzer * the analyzer to use for splitting text into terms (aka words) * @param text * the text to analyze * @param limit * the maximum number of pairs to return; zero indicates * "as many as possible". * @return an array of (frequency:term) pairs in the form of (freq0:term0, * freq1:term1, ..., freqN:termN). Each pair is a single string * separated by a ':' delimiter. */ public static String[] getMostFrequentTerms(Analyzer analyzer, String text, int limit) { if (analyzer == null) throw new IllegalArgumentException("analyzer must not be null"); if (text == null) throw new IllegalArgumentException("text must not be null"); if (limit <= 0) limit = Integer.MAX_VALUE; // compute frequencies of distinct terms HashMap map = new HashMap(); TokenStream stream = analyzer.tokenStream("", new StringReader(text)); TermAttribute termAtt = stream.addAttribute(TermAttribute.class); try { while (stream.incrementToken()) { MutableInteger freq = map.get(termAtt.term()); if (freq == null) { freq = new MutableInteger(1); map.put(termAtt.term(), freq); } else { freq.setValue(freq.intValue() + 1); } } } catch (IOException e) { throw new RuntimeException(e); } finally { try { stream.close(); } catch (IOException e2) { throw new RuntimeException(e2); } } // sort by frequency, text Map.Entry[] entries = new Map.Entry[map.size()]; map.entrySet().toArray(entries); Arrays.sort(entries, new Comparator>() { public int compare(Map.Entry e1, Map.Entry e2) { int f1 = e1.getValue().intValue(); int f2 = e2.getValue().intValue(); if (f2 - f1 != 0) return f2 - f1; String s1 = e1.getKey(); String s2 = e2.getKey(); return s1.compareTo(s2); } }); // return top N entries int size = Math.min(limit, entries.length); String[] pairs = new String[size]; for (int i=0; i < size; i++) { pairs[i] = entries[i].getValue() + ":" + entries[i].getKey(); } return pairs; } private static final class MutableInteger { private int value; public MutableInteger(int value) { this.value = value; } public int intValue() { return value; } public void setValue(int value) { this.value = value; } @Override public String toString() { return String.valueOf(value); } } // TODO: could use a more general i18n approach ala http://icu.sourceforge.net/docs/papers/text_boundary_analysis_in_java/ /** (Line terminator followed by zero or more whitespace) two or more times */ private static final Pattern PARAGRAPHS = Pattern.compile("([\\r\\n\\u0085\\u2028\\u2029][ \\t\\x0B\\f]*){2,}"); /** * Returns at most the first N paragraphs of the given text. Delimiting * characters are excluded from the results. Each returned paragraph is * whitespace-trimmed via String.trim(), potentially an empty string. * * @param text * the text to tokenize into paragraphs * @param limit * the maximum number of paragraphs to return; zero indicates "as * many as possible". * @return the first N paragraphs */ public static String[] getParagraphs(String text, int limit) { return tokenize(PARAGRAPHS, text, limit); } private static String[] tokenize(Pattern pattern, String text, int limit) { String[] tokens = pattern.split(text, limit); for (int i=tokens.length; --i >= 0; ) tokens[i] = tokens[i].trim(); return tokens; } // TODO: don't split on floating point numbers, e.g. 3.1415 (digit before or after '.') /** Divides text into sentences; Includes inverted spanish exclamation and question mark */ // private static final Pattern SENTENCES = Pattern.compile("[!\\.\\?\\xA1\\xBF]+"); /** * Returns at most the first N sentences of the given text. Delimiting * characters are excluded from the results. Each returned sentence is * whitespace-trimmed via String.trim(), potentially an empty string. * * @param text * the text to tokenize into sentences * @param limit * the maximum number of sentences to return; zero indicates "as * many as possible". * @return the first N sentences */ public static String[] getSentences(String text, int limit) { // return tokenize(SENTENCES, text, limit); // equivalent but slower int len = text.length(); if (len == 0) return new String[] { text }; if (limit <= 0) limit = Integer.MAX_VALUE; // average sentence length heuristic String[] tokens = new String[Math.min(limit, 1 + len/40)]; int size = 0; int i = 0; while (i < len && size < limit) { // scan to end of current sentence int start = i; while (i < len && !isSentenceSeparator(text.charAt(i))) i++; if (size == tokens.length) { // grow array String[] tmp = new String[tokens.length << 1]; System.arraycopy(tokens, 0, tmp, 0, size); tokens = tmp; } // add sentence (potentially empty) tokens[size++] = text.substring(start, i).trim(); // scan to beginning of next sentence while (i < len && isSentenceSeparator(text.charAt(i))) i++; } if (size == tokens.length) return tokens; String[] results = new String[size]; System.arraycopy(tokens, 0, results, 0, size); return results; } private static boolean isSentenceSeparator(char c) { // regex [!\\.\\?\\xA1\\xBF] switch (c) { case '!': return true; case '.': return true; case '?': return true; case 0xA1: return true; // spanish inverted exclamation mark case 0xBF: return true; // spanish inverted question mark default: return false; } } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy