All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.mahout.math.map.OpenCharByteHashMap Maven / Gradle / Ivy

The newest version!
/**
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements. See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership. The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License. You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 * KIND, either express or implied. See the License for the
 * specific language governing permissions and limitations
 * under the License.
 */

/*
Copyright � 1999 CERN - European Organization for Nuclear Research.
Permission to use, copy, modify, distribute and sell this software and its documentation for any purpose 
is hereby granted without fee, provided that the above copyright notice appear in all copies and 
that both that copyright notice and this permission notice appear in supporting documentation. 
CERN makes no representations about the suitability of this software for any purpose. 
It is provided "as is" without expressed or implied warranty.
*/
package org.apache.mahout.math.map;

import java.util.Arrays;

import org.apache.mahout.math.function.CharByteProcedure;
import org.apache.mahout.math.function.CharProcedure;
import org.apache.mahout.math.list.CharArrayList;

import org.apache.mahout.math.list.ByteArrayList;

/**
  * Open hash map from char keys to byte values.
 **/
public class OpenCharByteHashMap extends AbstractCharByteMap {
  protected static final byte FREE = 0;
  protected static final byte FULL = 1;
  protected static final byte REMOVED = 2;
  protected static final char NO_KEY_VALUE = 0;

  /** The hash table keys. */
  protected char[] table;

  /** The hash table values. */
  protected byte[] values;

  /** The state of each hash table entry (FREE, FULL, REMOVED). */
  protected byte[] state;

  /** The number of table entries in state==FREE. */
  protected int freeEntries;


  /** Constructs an empty map with default capacity and default load factors. */
  public OpenCharByteHashMap() {
    this(defaultCapacity);
  }

  /**
   * Constructs an empty map with the specified initial capacity and default load factors.
   *
   * @param initialCapacity the initial capacity of the map.
   * @throws IllegalArgumentException if the initial capacity is less than zero.
   */
  public OpenCharByteHashMap(int initialCapacity) {
    this(initialCapacity, defaultMinLoadFactor, defaultMaxLoadFactor);
  }

  /**
   * Constructs an empty map with the specified initial capacity and the specified minimum and maximum load factor.
   *
   * @param initialCapacity the initial capacity.
   * @param minLoadFactor   the minimum load factor.
   * @param maxLoadFactor   the maximum load factor.
   * @throws IllegalArgumentException if initialCapacity < 0 || (minLoadFactor < 0.0 || minLoadFactor >= 1.0) ||
   *                                  (maxLoadFactor <= 0.0 || maxLoadFactor >= 1.0) || (minLoadFactor >=
   *                                  maxLoadFactor).
   */
  public OpenCharByteHashMap(int initialCapacity, double minLoadFactor, double maxLoadFactor) {
    setUp(initialCapacity, minLoadFactor, maxLoadFactor);
  }

  /** Removes all (key,value) associations from the receiver. Implicitly calls trimToSize(). */
  @Override
  public void clear() {
    Arrays.fill(this.state, FREE);
    distinct = 0;
    freeEntries = table.length; // delta
    trimToSize();
  }

  /**
   * Returns a deep copy of the receiver.
   *
   * @return a deep copy of the receiver.
   */
  @Override
  public Object clone() {
    OpenCharByteHashMap copy = (OpenCharByteHashMap) super.clone();
    copy.table = copy.table.clone();
    copy.values = copy.values.clone();
    copy.state = copy.state.clone();
    return copy;
  }

  /**
   * Returns true if the receiver contains the specified key.
   *
   * @return true if the receiver contains the specified key.
   */
  @Override
  public boolean containsKey(char key) {
    return indexOfKey(key) >= 0;
  }

  /**
   * Returns true if the receiver contains the specified value.
   *
   * @return true if the receiver contains the specified value.
   */
  @Override
  public boolean containsValue(byte value) {
    return indexOfValue(value) >= 0;
  }

  /**
   * Ensures that the receiver can hold at least the specified number of associations without needing to allocate new
   * internal memory. If necessary, allocates new internal memory and increases the capacity of the receiver. 

This * method never need be called; it is for performance tuning only. Calling this method before put()ing a * large number of associations boosts performance, because the receiver will grow only once instead of potentially * many times and hash collisions get less probable. * * @param minCapacity the desired minimum capacity. */ @Override public void ensureCapacity(int minCapacity) { if (table.length < minCapacity) { int newCapacity = nextPrime(minCapacity); rehash(newCapacity); } } /** * Applies a procedure to each key of the receiver, if any. Note: Iterates over the keys in no particular order. * Subclasses can define a particular order, for example, "sorted by key". All methods which can be expressed * in terms of this method (most methods can) must guarantee to use the same order defined by this * method, even if it is no particular order. This is necessary so that, for example, methods keys and * values will yield association pairs, not two uncorrelated lists. * * @param procedure the procedure to be applied. Stops iteration if the procedure returns false, otherwise * continues. * @return false if the procedure stopped before all keys where iterated over, true otherwise. */ @Override public boolean forEachKey(CharProcedure procedure) { for (int i = table.length; i-- > 0;) { if (state[i] == FULL) { if (!procedure.apply(table[i])) { return false; } } } return true; } /** * Applies a procedure to each (key,value) pair of the receiver, if any. Iteration order is guaranteed to be * identical to the order used by method {@link #forEachKey(CharProcedure)}. * * @param procedure the procedure to be applied. Stops iteration if the procedure returns false, otherwise * continues. * @return false if the procedure stopped before all keys where iterated over, true otherwise. */ @Override public boolean forEachPair(CharByteProcedure procedure) { for (int i = table.length; i-- > 0;) { if (state[i] == FULL) { if (!procedure.apply(table[i], values[i])) { return false; } } } return true; } /** * Returns the value associated with the specified key. It is often a good idea to first check with * containsKey(char) whether the given key has a value associated or not, i.e. whether there exists an association * for the given key or not. * * @param key the key to be searched for. * @return the value associated with the specified key; 0 if no such key is present. */ @Override public byte get(char key) { final int i = indexOfKey(key); if (i < 0) { return 0; } //not contained return values[i]; } /** * @param key the key to be added to the receiver. * @return the index where the key would need to be inserted, if it is not already contained. Returns -index-1 if the * key is already contained at slot index. Therefore, if the returned index < 0, then it is already contained * at slot -index-1. If the returned index >= 0, then it is NOT already contained and should be inserted at * slot index. */ protected int indexOfInsertion(char key) { final int length = table.length; final int hash = HashFunctions.hash(key) & 0x7FFFFFFF; int i = hash % length; int decrement = hash % (length - 2); // double hashing, see http://www.eece.unm.edu/faculty/heileman/hash/node4.html //int decrement = (hash / length) % length; if (decrement == 0) { decrement = 1; } // stop if we find a removed or free slot, or if we find the key itself // do NOT skip over removed slots (yes, open addressing is like that...) while (state[i] == FULL && table[i] != key) { i -= decrement; //hashCollisions++; if (i < 0) { i += length; } } if (state[i] == REMOVED) { // stop if we find a free slot, or if we find the key itself. // do skip over removed slots (yes, open addressing is like that...) // assertion: there is at least one FREE slot. final int j = i; while (state[i] != FREE && (state[i] == REMOVED || table[i] != key)) { i -= decrement; //hashCollisions++; if (i < 0) { i += length; } } if (state[i] == FREE) { i = j; } } if (state[i] == FULL) { // key already contained at slot i. // return a negative number identifying the slot. return -i - 1; } // not already contained, should be inserted at slot i. // return a number >= 0 identifying the slot. return i; } /** * @param key the key to be searched in the receiver. * @return the index where the key is contained in the receiver, returns -1 if the key was not found. */ protected int indexOfKey(char key) { final int length = table.length; final int hash = HashFunctions.hash(key) & 0x7FFFFFFF; int i = hash % length; int decrement = hash % (length - 2); // double hashing, see http://www.eece.unm.edu/faculty/heileman/hash/node4.html //int decrement = (hash / length) % length; if (decrement == 0) { decrement = 1; } // stop if we find a free slot, or if we find the key itself. // do skip over removed slots (yes, open addressing is like that...) while (state[i] != FREE && (state[i] == REMOVED || table[i] != key)) { i -= decrement; //hashCollisions++; if (i < 0) { i += length; } } if (state[i] == FREE) { return -1; } // not found return i; //found, return index where key is contained } /** * @param value the value to be searched in the receiver. * @return the index where the value is contained in the receiver, returns -1 if the value was not found. */ protected int indexOfValue(byte value) { byte[] val = values; byte[] stat = state; for (int i = stat.length; --i >= 0;) { if (stat[i] == FULL && val[i] == value) { return i; } } return -1; // not found } /** * Fills all keys contained in the receiver into the specified list. Fills the list, starting at index 0. After this * call returns the specified list has a new size that equals this.size(). Iteration order is guaranteed to * be identical to the order used by method {@link #forEachKey(CharProcedure)}. *

This method can be used * to iterate over the keys of the receiver. * * @param list the list to be filled, can have any size. */ @Override public void keys(CharArrayList list) { list.setSize(distinct); char [] elements = list.elements(); int j = 0; for (int i = table.length; i-- > 0;) { if (state[i] == FULL) { elements[j++] = table[i]; } } } /** * Fills all pairs satisfying a given condition into the specified lists. Fills into the lists, starting at index 0. * After this call returns the specified lists both have a new size, the number of pairs satisfying the condition. * Iteration order is guaranteed to be identical to the order used by method {@link * #forEachKey(CharProcedure)}.

Example:
*

   * CharByteProcedure condition = new CharByteProcedure() { // match even values only
   * public boolean apply(char key, byte value) { return value%2==0; }
   * }
   * keys = (8,7,6), values = (1,2,2) --> keyList = (6,8), valueList = (2,1)
   * 
* * @param condition the condition to be matched. Takes the current key as first and the current value as second * argument. * @param keyList the list to be filled with keys, can have any size. * @param valueList the list to be filled with values, can have any size. */ @Override public void pairsMatching(CharByteProcedure condition, CharArrayList keyList, ByteArrayList valueList) { keyList.clear(); valueList.clear(); for (int i = table.length; i-- > 0;) { if (state[i] == FULL && condition.apply(table[i], values[i])) { keyList.add(table[i]); valueList.add(values[i]); } } } /** * Associates the given key with the given value. Replaces any old (key,someOtherValue) association, if * existing. * * @param key the key the value shall be associated with. * @param value the value to be associated. * @return true if the receiver did not already contain such a key; false if the receiver did * already contain such a key - the new value has now replaced the formerly associated value. */ @Override public boolean put(char key, byte value) { int i = indexOfInsertion(key); if (i < 0) { //already contained i = -i - 1; this.values[i] = value; return false; } if (this.distinct > this.highWaterMark) { int newCapacity = chooseGrowCapacity(this.distinct + 1, this.minLoadFactor, this.maxLoadFactor); rehash(newCapacity); return put(key, value); } this.table[i] = key; this.values[i] = value; if (this.state[i] == FREE) { this.freeEntries--; } this.state[i] = FULL; this.distinct++; if (this.freeEntries < 1) { //delta int newCapacity = chooseGrowCapacity(this.distinct + 1, this.minLoadFactor, this.maxLoadFactor); rehash(newCapacity); } return true; } @Override public byte adjustOrPutValue(char key, byte newValue, byte incrValue) { int i = indexOfInsertion(key); if (i < 0) { //already contained i = -i - 1; this.values[i] += incrValue; return this.values[i]; } else { put(key, newValue); return newValue; } } /** * Rehashes the contents of the receiver into a new table with a smaller or larger capacity. This method is called * automatically when the number of keys in the receiver exceeds the high water mark or falls below the low water * mark. */ protected void rehash(int newCapacity) { int oldCapacity = table.length; //if (oldCapacity == newCapacity) return; char[] oldTable = table; byte[] oldValues = values; byte[] oldState = state; this.table = new char[newCapacity]; this.values = new byte[newCapacity]; this.state = new byte[newCapacity]; this.lowWaterMark = chooseLowWaterMark(newCapacity, this.minLoadFactor); this.highWaterMark = chooseHighWaterMark(newCapacity, this.maxLoadFactor); this.freeEntries = newCapacity - this.distinct; // delta for (int i = oldCapacity; i-- > 0;) { if (oldState[i] == FULL) { char element = oldTable[i]; int index = indexOfInsertion(element); this.table[index] = element; this.values[index] = oldValues[i]; this.state[index] = FULL; } } } /** * Removes the given key with its associated element from the receiver, if present. * * @param key the key to be removed from the receiver. * @return true if the receiver contained the specified key, false otherwise. */ @Override public boolean removeKey(char key) { int i = indexOfKey(key); if (i < 0) { return false; } // key not contained this.state[i] = REMOVED; //this.values[i]=0; // delta this.distinct--; if (this.distinct < this.lowWaterMark) { int newCapacity = chooseShrinkCapacity(this.distinct, this.minLoadFactor, this.maxLoadFactor); rehash(newCapacity); } return true; } /** * Initializes the receiver. * * @param initialCapacity the initial capacity of the receiver. * @param minLoadFactor the minLoadFactor of the receiver. * @param maxLoadFactor the maxLoadFactor of the receiver. * @throws IllegalArgumentException if initialCapacity < 0 || (minLoadFactor < 0.0 || minLoadFactor >= 1.0) || * (maxLoadFactor <= 0.0 || maxLoadFactor >= 1.0) || (minLoadFactor >= * maxLoadFactor). */ @Override protected void setUp(int initialCapacity, double minLoadFactor, double maxLoadFactor) { int capacity = initialCapacity; super.setUp(capacity, minLoadFactor, maxLoadFactor); capacity = nextPrime(capacity); if (capacity == 0) { capacity = 1; } // open addressing needs at least one FREE slot at any time. this.table = new char[capacity]; this.values = new byte[capacity]; this.state = new byte[capacity]; // memory will be exhausted long before this pathological case happens, anyway. this.minLoadFactor = minLoadFactor; if (capacity == PrimeFinder.largestPrime) { this.maxLoadFactor = 1.0; } else { this.maxLoadFactor = maxLoadFactor; } this.distinct = 0; this.freeEntries = capacity; // delta // lowWaterMark will be established upon first expansion. // establishing it now (upon instance construction) would immediately make the table shrink upon first put(...). // After all the idea of an "initialCapacity" implies violating lowWaterMarks when an object is young. // See ensureCapacity(...) this.lowWaterMark = 0; this.highWaterMark = chooseHighWaterMark(capacity, this.maxLoadFactor); } /** * Trims the capacity of the receiver to be the receiver's current size. Releases any superfluous internal memory. An * application can use this operation to minimize the storage of the receiver. */ @Override public void trimToSize() { // * 1.2 because open addressing's performance exponentially degrades beyond that point // so that even rehashing the table can take very long int newCapacity = nextPrime((int) (1 + 1.2 * size())); if (table.length > newCapacity) { rehash(newCapacity); } } /** * Fills all values contained in the receiver into the specified list. Fills the list, starting at index 0. After this * call returns the specified list has a new size that equals this.size(). Iteration order is guaranteed to * be identical to the order used by method {@link #forEachKey(CharProcedure)}. *

This method can be used * to iterate over the values of the receiver. * * @param list the list to be filled, can have any size. */ @Override public void values(ByteArrayList list) { list.setSize(distinct); byte[] elements = list.elements(); int j = 0; for (int i = state.length; i-- > 0;) { if (state[i] == FULL) { elements[j++] = values[i]; } } } /** * Access for unit tests. * @param capacity * @param minLoadFactor * @param maxLoadFactor */ protected void getInternalFactors(int[] capacity, double[] minLoadFactor, double[] maxLoadFactor) { capacity[0] = table.length; minLoadFactor[0] = this.minLoadFactor; maxLoadFactor[0] = this.maxLoadFactor; } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy