org.apache.mahout.classifier.sgd.LogisticModelParameters Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of mahout-examples Show documentation
Show all versions of mahout-examples Show documentation
Scalable machine learning library examples
The newest version!
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.mahout.classifier.sgd;
import com.google.common.base.Preconditions;
import com.google.common.io.Closeables;
import java.io.DataInput;
import java.io.DataInputStream;
import java.io.DataOutput;
import java.io.DataOutputStream;
import java.io.File;
import java.io.FileInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import org.apache.hadoop.io.Writable;
/**
* Encapsulates everything we need to know about a model and how it reads and vectorizes its input.
* This encapsulation allows us to coherently save and restore a model from a file. This also
* allows us to keep command line arguments that affect learning in a coherent way.
*/
public class LogisticModelParameters implements Writable {
private String targetVariable;
private Map typeMap;
private int numFeatures;
private boolean useBias;
private int maxTargetCategories;
private List targetCategories;
private double lambda;
private double learningRate;
private CsvRecordFactory csv;
private OnlineLogisticRegression lr;
/**
* Returns a CsvRecordFactory compatible with this logistic model. The reason that this is tied
* in here is so that we have access to the list of target categories when it comes time to save
* the model. If the input isn't CSV, then calling setTargetCategories before calling saveTo will
* suffice.
*
* @return The CsvRecordFactory.
*/
public CsvRecordFactory getCsvRecordFactory() {
if (csv == null) {
csv = new CsvRecordFactory(getTargetVariable(), getTypeMap())
.maxTargetValue(getMaxTargetCategories())
.includeBiasTerm(useBias());
if (targetCategories != null) {
csv.defineTargetCategories(targetCategories);
}
}
return csv;
}
/**
* Creates a logistic regression trainer using the parameters collected here.
*
* @return The newly allocated OnlineLogisticRegression object
*/
public OnlineLogisticRegression createRegression() {
if (lr == null) {
lr = new OnlineLogisticRegression(getMaxTargetCategories(), getNumFeatures(), new L1())
.lambda(getLambda())
.learningRate(getLearningRate())
.alpha(1 - 1.0e-3);
}
return lr;
}
/**
* Saves a model to an output stream.
*/
public void saveTo(OutputStream out) throws IOException {
Closeables.close(lr, false);
targetCategories = getCsvRecordFactory().getTargetCategories();
write(new DataOutputStream(out));
}
/**
* Reads a model from a stream.
*/
public static LogisticModelParameters loadFrom(InputStream in) throws IOException {
LogisticModelParameters result = new LogisticModelParameters();
result.readFields(new DataInputStream(in));
return result;
}
/**
* Reads a model from a file.
* @throws IOException If there is an error opening or closing the file.
*/
public static LogisticModelParameters loadFrom(File in) throws IOException {
try (InputStream input = new FileInputStream(in)) {
return loadFrom(input);
}
}
@Override
public void write(DataOutput out) throws IOException {
out.writeUTF(targetVariable);
out.writeInt(typeMap.size());
for (Map.Entry entry : typeMap.entrySet()) {
out.writeUTF(entry.getKey());
out.writeUTF(entry.getValue());
}
out.writeInt(numFeatures);
out.writeBoolean(useBias);
out.writeInt(maxTargetCategories);
if (targetCategories == null) {
out.writeInt(0);
} else {
out.writeInt(targetCategories.size());
for (String category : targetCategories) {
out.writeUTF(category);
}
}
out.writeDouble(lambda);
out.writeDouble(learningRate);
// skip csv
lr.write(out);
}
@Override
public void readFields(DataInput in) throws IOException {
targetVariable = in.readUTF();
int typeMapSize = in.readInt();
typeMap = new HashMap<>(typeMapSize);
for (int i = 0; i < typeMapSize; i++) {
String key = in.readUTF();
String value = in.readUTF();
typeMap.put(key, value);
}
numFeatures = in.readInt();
useBias = in.readBoolean();
maxTargetCategories = in.readInt();
int targetCategoriesSize = in.readInt();
targetCategories = new ArrayList<>(targetCategoriesSize);
for (int i = 0; i < targetCategoriesSize; i++) {
targetCategories.add(in.readUTF());
}
lambda = in.readDouble();
learningRate = in.readDouble();
csv = null;
lr = new OnlineLogisticRegression();
lr.readFields(in);
}
/**
* Sets the types of the predictors. This will later be used when reading CSV data. If you don't
* use the CSV data and convert to vectors on your own, you don't need to call this.
*
* @param predictorList The list of variable names.
* @param typeList The list of types in the format preferred by CsvRecordFactory.
*/
public void setTypeMap(Iterable predictorList, List typeList) {
Preconditions.checkArgument(!typeList.isEmpty(), "Must have at least one type specifier");
typeMap = new HashMap<>();
Iterator iTypes = typeList.iterator();
String lastType = null;
for (Object x : predictorList) {
// type list can be short .. we just repeat last spec
if (iTypes.hasNext()) {
lastType = iTypes.next();
}
typeMap.put(x.toString(), lastType);
}
}
/**
* Sets the target variable. If you don't use the CSV record factory, then this is irrelevant.
*
* @param targetVariable The name of the target variable.
*/
public void setTargetVariable(String targetVariable) {
this.targetVariable = targetVariable;
}
/**
* Sets the number of target categories to be considered.
*
* @param maxTargetCategories The number of target categories.
*/
public void setMaxTargetCategories(int maxTargetCategories) {
this.maxTargetCategories = maxTargetCategories;
}
public void setNumFeatures(int numFeatures) {
this.numFeatures = numFeatures;
}
public void setTargetCategories(List targetCategories) {
this.targetCategories = targetCategories;
maxTargetCategories = targetCategories.size();
}
public List getTargetCategories() {
return this.targetCategories;
}
public void setUseBias(boolean useBias) {
this.useBias = useBias;
}
public boolean useBias() {
return useBias;
}
public String getTargetVariable() {
return targetVariable;
}
public Map getTypeMap() {
return typeMap;
}
public void setTypeMap(Map map) {
this.typeMap = map;
}
public int getNumFeatures() {
return numFeatures;
}
public int getMaxTargetCategories() {
return maxTargetCategories;
}
public double getLambda() {
return lambda;
}
public void setLambda(double lambda) {
this.lambda = lambda;
}
public double getLearningRate() {
return learningRate;
}
public void setLearningRate(double learningRate) {
this.learningRate = learningRate;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy