All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.mahout.clustering.syntheticcontrol.fuzzykmeans.Job Maven / Gradle / Ivy

The newest version!
/**
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.mahout.clustering.syntheticcontrol.fuzzykmeans;

import java.util.List;
import java.util.Map;

import org.apache.commons.cli2.builder.ArgumentBuilder;
import org.apache.commons.cli2.builder.DefaultOptionBuilder;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.util.ToolRunner;
import org.apache.mahout.clustering.canopy.CanopyDriver;
import org.apache.mahout.clustering.conversion.InputDriver;
import org.apache.mahout.clustering.fuzzykmeans.FuzzyKMeansDriver;
import org.apache.mahout.common.AbstractJob;
import org.apache.mahout.common.ClassUtils;
import org.apache.mahout.common.HadoopUtil;
import org.apache.mahout.common.commandline.DefaultOptionCreator;
import org.apache.mahout.common.distance.DistanceMeasure;
import org.apache.mahout.common.distance.EuclideanDistanceMeasure;
import org.apache.mahout.common.distance.SquaredEuclideanDistanceMeasure;
import org.apache.mahout.utils.clustering.ClusterDumper;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

public final class Job extends AbstractJob {
  
  private static final Logger log = LoggerFactory.getLogger(Job.class);
  
  private static final String DIRECTORY_CONTAINING_CONVERTED_INPUT = "data";
  
  private static final String M_OPTION = FuzzyKMeansDriver.M_OPTION;
  
  private Job() {
  }
  
  public static void main(String[] args) throws Exception {
    if (args.length > 0) {
      log.info("Running with only user-supplied arguments");
      ToolRunner.run(new Configuration(), new Job(), args);
    } else {
      log.info("Running with default arguments");
      Path output = new Path("output");
      Configuration conf = new Configuration();
      HadoopUtil.delete(conf, output);
      run(conf, new Path("testdata"), output, new EuclideanDistanceMeasure(), 80, 55, 10, 2.0f, 0.5);
    }
  }
  
  @Override
  public int run(String[] args) throws Exception {
    addInputOption();
    addOutputOption();
    addOption(DefaultOptionCreator.distanceMeasureOption().create());
    addOption(DefaultOptionCreator.convergenceOption().create());
    addOption(DefaultOptionCreator.maxIterationsOption().create());
    addOption(DefaultOptionCreator.overwriteOption().create());
    addOption(DefaultOptionCreator.t1Option().create());
    addOption(DefaultOptionCreator.t2Option().create());
    addOption(M_OPTION, M_OPTION, "coefficient normalization factor, must be greater than 1", true);
    
    Map> argMap = parseArguments(args);
    if (argMap == null) {
      return -1;
    }
    
    Path input = getInputPath();
    Path output = getOutputPath();
    String measureClass = getOption(DefaultOptionCreator.DISTANCE_MEASURE_OPTION);
    if (measureClass == null) {
      measureClass = SquaredEuclideanDistanceMeasure.class.getName();
    }
    double convergenceDelta = Double.parseDouble(getOption(DefaultOptionCreator.CONVERGENCE_DELTA_OPTION));
    int maxIterations = Integer.parseInt(getOption(DefaultOptionCreator.MAX_ITERATIONS_OPTION));
    float fuzziness = Float.parseFloat(getOption(M_OPTION));
    
    addOption(new DefaultOptionBuilder().withLongName(M_OPTION).withRequired(true)
        .withArgument(new ArgumentBuilder().withName(M_OPTION).withMinimum(1).withMaximum(1).create())
        .withDescription("coefficient normalization factor, must be greater than 1").withShortName(M_OPTION).create());
    if (hasOption(DefaultOptionCreator.OVERWRITE_OPTION)) {
      HadoopUtil.delete(getConf(), output);
    }
    DistanceMeasure measure = ClassUtils.instantiateAs(measureClass, DistanceMeasure.class);
    double t1 = Double.parseDouble(getOption(DefaultOptionCreator.T1_OPTION));
    double t2 = Double.parseDouble(getOption(DefaultOptionCreator.T2_OPTION));
    run(getConf(), input, output, measure, t1, t2, maxIterations, fuzziness, convergenceDelta);
    return 0;
  }
  
  /**
   * Run the kmeans clustering job on an input dataset using the given distance measure, t1, t2 and iteration
   * parameters. All output data will be written to the output directory, which will be initially deleted if it exists.
   * The clustered points will reside in the path /clustered-points. By default, the job expects the a file
   * containing synthetic_control.data as obtained from
   * http://archive.ics.uci.edu/ml/datasets/Synthetic+Control+Chart+Time+Series resides in a directory named "testdata",
   * and writes output to a directory named "output".
   * 
   * @param input
   *          the String denoting the input directory path
   * @param output
   *          the String denoting the output directory path
   * @param t1
   *          the canopy T1 threshold
   * @param t2
   *          the canopy T2 threshold
   * @param maxIterations
   *          the int maximum number of iterations
   * @param fuzziness
   *          the float "m" fuzziness coefficient
   * @param convergenceDelta
   *          the double convergence criteria for iterations
   */
  public static void run(Configuration conf, Path input, Path output, DistanceMeasure measure, double t1, double t2,
      int maxIterations, float fuzziness, double convergenceDelta) throws Exception {
    Path directoryContainingConvertedInput = new Path(output, DIRECTORY_CONTAINING_CONVERTED_INPUT);
    log.info("Preparing Input");
    InputDriver.runJob(input, directoryContainingConvertedInput, "org.apache.mahout.math.RandomAccessSparseVector");
    log.info("Running Canopy to get initial clusters");
    Path canopyOutput = new Path(output, "canopies");
    CanopyDriver.run(new Configuration(), directoryContainingConvertedInput, canopyOutput, measure, t1, t2, false, 0.0, false);
    log.info("Running FuzzyKMeans");
    FuzzyKMeansDriver.run(directoryContainingConvertedInput, new Path(canopyOutput, "clusters-0-final"), output,
        convergenceDelta, maxIterations, fuzziness, true, true, 0.0, false);
    // run ClusterDumper
    ClusterDumper clusterDumper = new ClusterDumper(new Path(output, "clusters-*-final"), new Path(output, "clusteredPoints"));
    clusterDumper.printClusters(null);
  }
}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy