org.apache.mahout.clustering.syntheticcontrol.kmeans.Job Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of mahout-examples Show documentation
Show all versions of mahout-examples Show documentation
Scalable machine learning library examples
The newest version!
/**
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.mahout.clustering.syntheticcontrol.kmeans;
import java.util.List;
import java.util.Map;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.util.ToolRunner;
import org.apache.mahout.clustering.Cluster;
import org.apache.mahout.clustering.canopy.CanopyDriver;
import org.apache.mahout.clustering.conversion.InputDriver;
import org.apache.mahout.clustering.kmeans.KMeansDriver;
import org.apache.mahout.clustering.kmeans.RandomSeedGenerator;
import org.apache.mahout.common.AbstractJob;
import org.apache.mahout.common.ClassUtils;
import org.apache.mahout.common.HadoopUtil;
import org.apache.mahout.common.commandline.DefaultOptionCreator;
import org.apache.mahout.common.distance.DistanceMeasure;
import org.apache.mahout.common.distance.EuclideanDistanceMeasure;
import org.apache.mahout.common.distance.SquaredEuclideanDistanceMeasure;
import org.apache.mahout.utils.clustering.ClusterDumper;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
public final class Job extends AbstractJob {
private static final Logger log = LoggerFactory.getLogger(Job.class);
private static final String DIRECTORY_CONTAINING_CONVERTED_INPUT = "data";
private Job() {
}
public static void main(String[] args) throws Exception {
if (args.length > 0) {
log.info("Running with only user-supplied arguments");
ToolRunner.run(new Configuration(), new Job(), args);
} else {
log.info("Running with default arguments");
Path output = new Path("output");
Configuration conf = new Configuration();
HadoopUtil.delete(conf, output);
run(conf, new Path("testdata"), output, new EuclideanDistanceMeasure(), 6, 0.5, 10);
}
}
@Override
public int run(String[] args) throws Exception {
addInputOption();
addOutputOption();
addOption(DefaultOptionCreator.distanceMeasureOption().create());
addOption(DefaultOptionCreator.numClustersOption().create());
addOption(DefaultOptionCreator.t1Option().create());
addOption(DefaultOptionCreator.t2Option().create());
addOption(DefaultOptionCreator.convergenceOption().create());
addOption(DefaultOptionCreator.maxIterationsOption().create());
addOption(DefaultOptionCreator.overwriteOption().create());
Map> argMap = parseArguments(args);
if (argMap == null) {
return -1;
}
Path input = getInputPath();
Path output = getOutputPath();
String measureClass = getOption(DefaultOptionCreator.DISTANCE_MEASURE_OPTION);
if (measureClass == null) {
measureClass = SquaredEuclideanDistanceMeasure.class.getName();
}
double convergenceDelta = Double.parseDouble(getOption(DefaultOptionCreator.CONVERGENCE_DELTA_OPTION));
int maxIterations = Integer.parseInt(getOption(DefaultOptionCreator.MAX_ITERATIONS_OPTION));
if (hasOption(DefaultOptionCreator.OVERWRITE_OPTION)) {
HadoopUtil.delete(getConf(), output);
}
DistanceMeasure measure = ClassUtils.instantiateAs(measureClass, DistanceMeasure.class);
if (hasOption(DefaultOptionCreator.NUM_CLUSTERS_OPTION)) {
int k = Integer.parseInt(getOption(DefaultOptionCreator.NUM_CLUSTERS_OPTION));
run(getConf(), input, output, measure, k, convergenceDelta, maxIterations);
} else {
double t1 = Double.parseDouble(getOption(DefaultOptionCreator.T1_OPTION));
double t2 = Double.parseDouble(getOption(DefaultOptionCreator.T2_OPTION));
run(getConf(), input, output, measure, t1, t2, convergenceDelta, maxIterations);
}
return 0;
}
/**
* Run the kmeans clustering job on an input dataset using the given the number of clusters k and iteration
* parameters. All output data will be written to the output directory, which will be initially deleted if it exists.
* The clustered points will reside in the path
© 2015 - 2025 Weber Informatics LLC | Privacy Policy